8.851 Homework 4

Iain Stewart, March 5, 2003

Problem 1) HQET for Antiquarks

Do problem 1 in section 2 of the book.
Problem 2) Heavy-to-Light Form Factors in HQET

Consider heavy-to-light semileptonic decays, B to a vector meson.

a) Do the first part of problem 3 in section 2 of the book. (Do not bother
with the last part which asks you to discuss the decays to p mesons.) Argue
that

(VI )T Qu|PD(v)) = tr (MyTH), (1)

where My depends on p/, €%, and v. Then show that the most general My
gives no reduction in the number of vector and axial-vector form factors
(which is why this problem considers flavor symmetry relations but not spin
symmetry relations).

b) (For bonus only) Use your results from a) to solve problem 4 in section 2
which shows that there are spin symmetry relations for the tensor current.



8.851 Solutions 4

Michael McNeil Forbes
April 9, 2003

1 Comments

The grading for these questions refers to the following parts:

la: Antiquark propagator.

1b: Antiquark vertex.

2a: Problem 2.3.

2b: Argument that spin symmetry does not reduce the number of form factors.

2¢: Tensor results (problem 2.4.)

2 Question 1: HQET for Antiquarks

One can see that, if p = mv + k, where mv is on-shell (v - v=1), then the
projectors

po= 127 1)
project out the particle and antiparticle components respectively. We can see
this by considering the Dirac equation. In a covariant formulation, particles
14+ have momentum p* while antiparticles ¥y_ have momentum —p#, thus, the
Dirac equation is:

(Fp—-m)L =0 = TPy = mips. (2)

Thus,
Pape =Ty LIy Q
Pripy = mz—:f L = 5%;11)1; =0. (4)

We see that, to transform relations for particles to the equivalent relations
for antiparticles, we simply take P, —» P_, p = —p, v = —v and k = ~k
everywhere and exchange appropriate vertices.



Thus, the propagator and vertex follow from the particle result:

P+v-k+ie - P_(—v)-(—k)+ie—P_v-k+ie’ )
—ig(T*), - ig(T*) v,. (6)

The transpose here results from the interpretation of the ends of the antiquark
propagator: antiquarks propagate “backward” in time and so connect vertices in
the reverse order. Another way of seeing this is that the free vacuum is annihi-
lated by 1 |0) = O since it has no particles, however, it also has no antiparticles
and thus ¢_ |0) = 0 since 1 ~ bt. Thus, the anti-quark propagator is ()_v_)
compared to (11, ) for the quarks. Thus, in terms of indices, the index order
is reversed. The vertex still couples the same way to ¢ but the propagator is
“backward” leading to the transpose.
Explicitly, define

T =™ (Y + ). (7)

Now we have the identities

Piy# = 4" Pr £ 0¥, (8)
Pyy"Py = £Py v Py, (9)
Ply° =Py, (10)
Pyt Py = (v £ o¥) Py, (11)
PiyPy = (§ £1)Py = 2P, P =0, (12)
P.pP- =P, P where DY =D* —v*(v- D). (13)
Now, the QCD Lagrangian becomes
Lqcp = ¥(@P —m)¥, (14)
= (Y4 +P-)(@P - 2mPL) (Y4 +¢-), (15)

=94 (w-D—2m)py —piv-Dyp +PyiP %+ il py.  (16)

The equations of motion are thus

(tv-D —2m)py = —ip ¢, (tv-D)p_ = —iP, 9. (17)

Solving for the anti-quarks (or equivalently, “integrating out” the antiquarks at
tree level), we have

Wy = —(iv-D - 2m)~NiP y_, (18)

- ) ) 1 .
EQCD = '(ﬁ_ —jv-D — Zplml‘wL ’(,b_. (19)

The second term is suppressed by m~! and is dropped to leading order. Now we
normal order the operators recalling that the vacuum is annihilated by x = 1/)“_,



so we have!
LLqcp =: ¢-[—iv- (8 +igA?T™)y_ : + O(m™), (20)
= xliv* (—0, + igAn [r*]7)]x + O(m ™), (21)

from which the propagator and vertex can be read off including correct signs
and the transpose. The propagator has a projector appended to project out the
antiparticle state.

3 Question 2: Heavy-to-Light Form Factors in
HQET.
The form factors are:
V@, e sQIP QW) = —if Des —ie* - plal® (p+ p)y + oD (- )],
— ~if(Q)€“ — e* va[( (@) + a(Q))mQU + (a(Q)
V(@' )lgQIP (1) = ¢ Veproe™ 0+ ) p - p)°
— g(Q)euuAas*me (pl)\,ua _ ’U}‘pla).
In addition, we have the normalization
[P (p)) = ymg | PP (v)) (22)

The states and operators of HQET are normalized such that, in the limit mp . —
00, one has a flavour symmetry. This relates

(V(#',)lalb,|P® (v)) = (V (P, )laT | P19 () . (23)
Collecting components, we thus have
Vmg® (y) = vmeg®(y), (24)
vy P y) = vime T o), (25)
my [0 () + 0 (4)] = [P () + O W), (26)
vmlal) (v) — a® @) = vmclal? (v) — ¥ (v)]. (27)

Now, consider a general current (V (p',€)|gT'Q,|P(?)(v)). Under spin transfor-
mations,
Qv — D(R)QQ%
H, = P,[P}9) +iP{@v] - D(R)gH,,
(V(@',€)laTQu|P'D (v)) = (V (', €)|ldTD(R) Qx| P'?) (v)) -

! Note, one sign change comes from anticommutation. Another on the kinetic term from
integration by parts. The +° freely commutes through all terms as there is no more Lorentz
structure.

(Q))

JAB



Thus, if we let I' — 1"D(R)C_21 then the matrix element will be invariant. Thus,
we can construct the most general form factor from combinations of I'H, and
I" that are invariant under the spurious symmetry I" — I‘D(R)él. This implies
that the most general form contains I'H,.

This quantity is still a bispinor (it has uncontracted light quark indices). To
form a Lorentz covariant current, these must be contracted. The most general
such contraction is '

(V(©',e)ldlQu| PP (v)) = Tr (M,THD) (28)

where the bispinor M, depends on the kinematic variables p', v and the polar-
ization €. There is a source of confusion in the book about currents and matrix
elements. Expressions like this and (2.89) are actually only valid relations be-
tween matrix elements of certain states. Thus, in this case, we are taking a
matrix element with a pseudoscalar state and so we should replace the operator
Py (@ — 0 and P«SQ) — const in the operator H, for this matrix element. We
will absorb this constant into the definition of M, and take it to be one.

Now we can use covariance to restrict the form of M,. In particular, it must
be a bispinor constructed from p’, v and £* and have the appropriate parity
transformations

My (vp, Py, €5) = —7° My (v,p',e*)7°. (29)

~

To see this, consider inserting the parity operator PTf’ =1

(V(p,)|1a0Q,T|P@ (v)) = (V (¢, e)[B P Q,) P PIP@ (), (30)
= (V{5 e)[(~1)(@°T1° Q) (DI PD (v,)) , (31)
=Tr (My(e*,p',v)I‘Hf,Q)) , (32)
1
=T (Mt T i) 9
= tr (Mg o T g i) (3

The minus sign comes from commuting the 7° past the v5. In addition, com-
muting the 7° past the ¢, changes the spatial signs: 7°p,, = #7°.
The transformation properties of the kinetic elements are

Yy = (7%, —9), (35a)
gt = (e*°, —e_"), (35b)
vk = (v°, V), (35¢)
p¥ = (p°,-p). (35d)

Thus, we have the following

Scalar (Parity Even): ¢, §.



Pseudo-Scalar (Parity Odd): ¢, ¢* v, ¢, p.

Note that one pseudo-scalar candidate, * - p’ = 0 has been omitted.

Noting that ¢*¢* = 1, ¢p = 1 and p'p’ = m? etc. we see that one only
need consider terms with 3 or fewer factors. One can also use the relation
HZ%¢ = —HQ to eliminate spurious factors of ¢ that appear to the left of other
terms. Thus, the most general form for M, is

M, =af" +be* -vp+cf P+ di*p. (36)

Thus, we see that there are exactly four unknown form factors. These can be
related to those given in the first part of the problem by computing the traces.
In particular, including spin symmetry does not reduce the number of form
factors.

The results are (thanks to Dru Renner for the following):

F@ = —2mf*(a+c+4d), (37a)
af +a? = amg*e, (37b)
af —a? = 2mg'(d - v), (37¢)

g9 =2mg'/%d. (37d)

The tensor results can be obtained similarly by performing the traces to give:

99 +¢% = —2m5"*(a +¢), (38a)
99 — g% = —2mf’d, (38b)
hQ = —mg*?b, (38c)

using the definitions of the form factors given in the text, problem 2.4. Through
the constants a, b, ¢ and d one can relate the form factors for the tensor current to
those of the vector and pseudo-scalar currents, obtaining the results of problem
2.4.

3.1 References

e Manohar and Wise, Heavy Quark Physics. Problems 3 and 4 in Chapter
2.



8.851 Homework 5
Iain Stewart, March 12, 2003

Problem 1) Renormalization of cg(u)

Draw the diagrams needed to compute the anomalous dimension of the coef-
ficient cp(p) which multiplies the magnetic moment Lagrangian ﬁg). Discuss
whether the kinetic energy Lagrangian E%) mixes with ,C%) under renormal-
ization. Argue that the anomalous dimension will be proportional to the

adjoint Casmir C4 without computing integrals (Hint: think about Coulomb
gauge).

Problem 2) Heavy-to-Light Currents in HQET

Consider the O(1/mg) heavy-to-light vector currents

01 = GViPQ,, Oy=q(—w- DWQ,,
Oy, = qviDQ,, Os =g (—iv- T))U“QU ,
Os = §iD*Q,, Os = G (-iD")Q,, (1)

with coefficients B; to Bg. Using reparameterization invariance determine
which of these coefficients are fixed by the coefficients C} and C; of the lead-
ing order vector heavy-to-light currents, gv*@), and qu*Q),.

Problem 3) Non-perturbative form factor corrections

In Chapter 4 of the book do problem 3 parts a), b), and c¢). Feel free to use
results given in problems 6-9 in Chapter 2.



currents are

Q= (1+ ) Qu + (A% /), (11a)
= 17Qu+ 5T iPQu + O(N /), (11b)
=Jty ﬁa +O(A2/md), (11¢)

PPQy =7 (v" + %) (1 + 22'75)@) Qv + O(A?/m3)), (114d)
=q*Q, + +%26¢'D“QU + 21711qu”in” + O(A2/m2Q), (11e)
=J¥+ énlz—Q (203 + 03) + O(A?/md). (11f)

Thus, in order to have combinations of the operators and currents that are
reparametrisation invariant to order A?/m? as in (10), one must have

Bi(p) = Ci(p), (12a)
By(p) = Ca(p), (12b)
5 Bs(i) = Cap). (12¢)

Further restrictions are not placed on the other coefficients to this order. This
is also discussed in Neubert.

2.1 References

e Luke and Manohar,Reparameterisation Invariance Constraints on Heavy
Particle Effective Field Theories. Phys. Lett. B286 (1992) 348-354.
arXiv:hep-ph/9205228

3 Question 3: Non-perturbative Form Factor
Corrections

This question concerns problem 3 of Chapter 4 of Manohar and Wise. References
are made to problems in Chapter 2 of the same book. IL.e. problem 2.6 refers to
problem 6 in chapter 2.

In problem 2.6, the matrix F* is introduces which contains the D3 and
DY fields and which satisfies various relations listed there. The B fields are

contained in the matrix H, = H,(,b). Both of these transform as

F* - D(R) F*, Hy = D(R)yHo, (13)



under heavy quark spin transformations, so using the usual symmetry arguments
whereby this symmetry is fully restored in the currents

E(. .. )1"( .. )b (14)

by having
I —» D(R).I'D(R), (15)

we must have the combination —FZFHU. We parameterize the remaining struc-
ture in matrices S,y as given in the book. Note that these relationships are
weak: they only hold between appropriate matrix elements and are not opera-
tor relations.

Now we consider the most general structure for S,». From the properties of
7’: and H, as well as cyclic properties of the trace, we have the following:

F:,,} = FZa 75?5 = _F57 (163‘)
Hv¢ = _Hva ¢Hv = Hy, (16b)
Y. Fy =0, v F, =0, (16¢c)
W =20 — f, Joh = 20W—ghp, (16d)

Thus, factors of ¢’ can be absorbed into F%, and factors of g can be absorbed
into H, and factors of v, and v/, vanish. The last relations show that we can
commute the terms as appropriate to facilitate the cancellations. Thus, we are
left constructing terms with vy, v,, v}, va and gs. Finally, parity forbids terms
with 5 and terms with multiple 7, can be reduced to terms linear in vy, and g, .
From these we can construct the form of S?A given which is the most general
form with linearly independent terms constructed from these ingredients.
The relevant equations of motion are

2 (iD -v') = 0, (v-D)b=0. (17)

By contracting v* and v'* into the equations we have
VA Tr(SY)F, TH,) =0, A Te(SOF,,TH,) = 0. (18)

Expanding

v’\S‘(,b)? = v,,[rl(b) + Téb)w + T3(b)¢ + T}b)], (19)
= va['rl(b) + Téb)w - 'réb) + 'rib)], (20)
V8 = v, [rDw + 7 + ) + 07, (21)
= v,,[Tl(c)w + Tz(b)w — 7(9s3], (22)

Here we have used relations (16a) and (16b) to simplify the coeflicient of 73, set
w=v-v' as well as (16¢) to eliminate Tic) in the full expression. The remaining
terms are generally non-zero, and so must be zero for the equations of motion
to hold. This gives the desired relations.

eq:2

eq:3




Using the result of problem 2.9 we have
i8, €y Tby) = (Av, — A v))7 Tr[v, FrzGH®)]. (23)

Meanwhile, expanding the derivatives, we have

i, €y Tby) = Cyri @ y Ty + By Ti0yby — Cor GASAT Dy + Ty gASAThy,  (24)
= 2yi( 8, — igAIA)Th, + Ty Ti( 3, +igAA )by, (25)
= 2yiD,Tb, +CyTiD,by, (26)
= Tr(S)F, TH,) + Tr(S{)F, TH,). (27)

Equating the coeflicients one obtains the relations in problem 3.c.

3.1 References

e Manohar and Wise, Heavy Quark Physics. Problems 6-9 of Chapter 2,
and Problem 3 of Chapter 4.



8.851 Homework 8

Iain Stewart, April 16, 2003 (due Apr.23)
Problem 1) Heavy Meson Chiral Perturbation Theory
Show that we recover our results for the leading order heavy meson chiral
Lagrangian gauged under electromagnetism by first using left and right hand

currents and then specializing to the U(1). Explain how the ' term must
be treated.

Problem 2) Do Problem 3 in Chapter 5 of the Book

Problem 3) Chiral Lagrangian for Heavy Vector Mesons

Introduce the vector meson fields as a 3 X 3 octet matrix

pO ¢(8) + *
ﬁ " _\/‘% opu (8) KM
0, = pr 4t KO, (1)
K- K? 2
© u 6
and as a singlet
Su = ¢£0)- (2)

(a linear combination of ¢{*® will be the ¢ and w). Under chiral SU(3), x
SU(3)R let
0, —Uo,Ut, Sy — Sy (3)

Under charge conjugation,
CO,C™ = —(’)Z, CS,C™'=-8,, céCct=¢T. (4)

Construct the O(p) chiral SU(3) Lagrangian for these vector mesons treating
them as heavy static fields with fixed four-velocity v#. Comment on the
expansion parameter in this theory. (Bonus: Discuss the terms with the
quark mass matrix as well.)



8.851 Solutions 8

Michael McNeil Forbes
June 10, 2003

1 Question 1: Heavy Meson Chiral Perturba-
tion Theory

The tricky part about including chiral symmetry with heavy mesons is that the
natural field A, does not have nice chiral transformation properties. This is
discussed in Chapter 5 of Manohar and Wise. We follow their conventions and
perform a field redefinition H, which transforms as

H=Ht— HU (1)

where

£=vE. (2)

Note what happens here: first of all, these are all matrix relations. Second,
we have the matrix ¥ of light mesons which has definite chiral transformation
properties:

£ — LYR'. (3)

The matrix U is defined such that
€ — LeUt = UeRt. (4)

The complication of this is that 3, £ and therefore U have spacetime dependence.
Thus, derivatives must be constructed in a covariant way to preserve these
symmetries. One way to do this is to introduce the combinations

) )
Vu = §(€Tau§ + {8,‘{1), Au = 'z“(gauf - fauft)- (5)
Now we construct the covariant derivative
D, =0,-iV,. (6)

For a file which transforms as ¢ — U¢ such as HY, one can easily verify that
this acts covariantly:

Dyp—-UD,¢. (7)



To act on H one must be careful about the indices:
D,H=0,H+iHV,. (8)

This only holds, however, for global transformations L and R independent of
z,. To promote these to local symmetries, one must introduce the currents [,
and r, which transform as

l, — L, LY +4(8,L)L, r, — RI,R' +4(8,R)R'. 9

Now we can recover covariance by redefining

Yy

€10+ it)E + (0, + im e, (10)

A, %(gf(au Fil)E — E(9, + ir,)ENED. a1)

The covariant derivative now acts covariantly for local chiral transformations:
D,¢ - UDy¢. (12)
To include the U(1)em gauge field, one sets
ly=r,=eQA,. (13)

In addition, one must consider the heavy quarks which have charges Q’. This
has a similar structure but acts on the heavy quark indices of H ~ Qq. Thus,
we have the full covariant derivative

D,H = D, H +ieB,Q'H (14)

where D, H is defined in (8).
Expanding these out, one obtains the results stated in class. (See the at-
tached notes for some explicit calculations.)

1.1 References

e Manohar and Wise, Heavy Quark Physics. Chapter 5.

2 Question 2: Form Factors for D™ — K- ntév,.

This is Problem 3 of Chapter 5 in Manohar and Wise. Please see the scanned
solution.

2.1 References
e Manohar and Wise, Heavy Quark Physics. Problem 3 of Chapter 5.

eq:1



3 Problem 3: Chiral Lagrangian for Heavy Vec-
tor Mesons.

This problem is discussed in detail in the following reference.

3.1 References

e E. Jenkins, A. V. Manohar and M. B. Wise, Chiral Perturbation Theory
for Vector Mesons. Phys. Rev. Lett. 75 (1995), 2272.
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