Global Fit for Branching Fractions and FF Parameters of $B -> D^{(*)}/\nu$ Decays

- Our fitting method in a nutshell

Essence of our fitting (1)

- Consider a simple case
 - Only two signal mode : mode1 (BF1) and mode2 (BF2)
 - Only one background category : bkg
- We construct 3D binned histograms from data and MC.
 - One histogram for data
 - Three MC histograms (using MC truth info):
 - One mode1 histogram
 - One mode 2 histogram
 - One bkg histogram
- If the MC is perfect and N^{MC} are luminosity normalized to data,

$$\chi^{2} = \sum_{\text{bin}} \frac{\left(N^{data} - N_{1}^{MC} - N_{2}^{MC} - N_{b}^{MC}\right)^{2}}{\sigma_{d}^{2} + \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{b}^{2}} \cong \text{number of bins}$$

Essence of our fitting (2)

- What if BF1 and BF2 are different from the one used in MC?
 - We use coefficients to adjust the yield

$$\chi^{2} = \sum_{\text{bin}} \frac{\left(N^{data} - \frac{BF1}{BF1_{SP6}} N_{1}^{MC} - \frac{BF2}{BF2_{SP6}} N_{2}^{MC} - N_{b}^{MC}\right)^{2}}{\sigma_{d}^{2} + \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{b}^{2}}$$

- These BF1 and BF2 can be a free parameter in the fit.
- If we can adjust with coefficients, it is easier because we don't have to remake 3D histograms.
- What if the BF of one of the (many) decay processes in bkg is different from the one used in MC?
 - We cannot just use a coefficient to adjust the difference.
 - We have to go back and remake the 3D histogram of bkg.
 - This is BF re-weighting of background MC.

Essence of our fitting (3)

- What if one of FF parameters of mode1 is different from the one used in MC?
 - Again, a coefficient cannot adjust the difference.
 - We have to go back and remake the 3D histogram of mode1.
 - This is FF-reweighting.
- So, if we want to measure FF parameters, we have to go back and recreate 3D histograms in the iteration of the fitting?
 - This is an option but this is too slow....
 - There is a better way!

Essence of FF re-weighting

- Suppose decay rate of mode1 is given by
 - $\Gamma = A(b p1 * c)$
 - *p1* is a FF parameter and *A*, *b* and *c* are constants.
- Weight is given by
 - $W = (b p1 * c) / (b p1_{SP6} * c)$
 - $p1_{SP6}$ is the value used in MC and p1 is a new value.
- W differ event by event because b and c depends on kinematic variables of the event.
 - *W* cannot go into coefficients.
 - We have to remake 3D histograms for different *p1*

$$N_1^{MC} = \sum_{\text{event}} 1 \implies N_1^{MC} = \sum_{\text{event}} W$$

Essence of FF parameter fitting

Weight can be

$$W = W_b - p_1 W_c = \frac{b}{b - p_{1SP6}c} - p_1 \frac{c}{b - p_{1SP6}c}$$

• Instead of making one N_1^{MC} , we can make two histograms which are independent of p1

$$N_a^{MC} = \sum_{\text{event}} W_a$$
, $N_c^{MC} = \sum_{\text{event}} W_c$

Then, chi-square is given by

$$\chi^{2} = \sum_{\text{bin}} \frac{\left(N^{data} - \frac{BF1}{BF1_{SP6}} \left(N_{a}^{MC} - p_{1}N_{b}^{MC}\right) - \frac{BF2}{BF2_{SP6}} N_{2}^{MC} - N_{b}^{MC}\right)^{2}}{\sigma_{d}^{2} + \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{b}^{2}}$$

Now, we can fir for *p1* without re-making histograms.

Essence of our fitting (4)

- What if background is not well modeled?
 - We do BF reweighting of some processes.
 - This can change the shape of 3D histogram.
 - But, still may need some adjustments?
 - We use coefficients to adjust background.

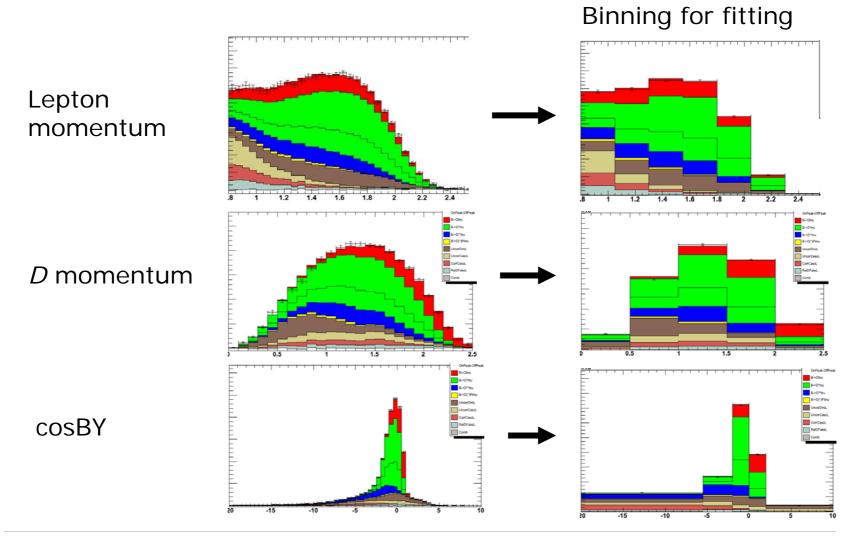
$$\chi^{2} = \sum_{\text{bin}} \frac{\left(N^{data} - \frac{BF1}{BF1_{SP6}} \left(N_{a}^{MC} - p_{1}N_{b}^{MC}\right) - \frac{BF2}{BF2_{SP6}} N_{2}^{MC} - C_{b}N_{b}^{MC}\right)^{2}}{\sigma_{d}^{2} + \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{b}^{2}}$$

 This C_b can adjust the data-MC difference of the overall number of background candidates.

Fitting strategy – Binning(1)

- 3D binning
 - lepton momentum, D momentum and cosBY
 - The size of each bin is decided based on
 - As much number of candidates per bin as possible.
 - Keep original shape or dependence to the variable.
 - Maximum separation between signal modes and backgrounds.
- $\cos BY (Y = DI)$
 - B->Dlnu mode has sharp edge at $\cos BY = \pm 1$.
 - Because of beam energy fluctuation, this edge is not well simulated.
 - Thus, we avoid to have a bin boundary at cosBY = ±1.

Fitting strategy – Binning(2)



RC Meeting, K. Hamano

Fitting strategy – Reweighting

- MC/FF re-weighting is done in two stages
- Histogram making stage
 - BF re-weighting of background processes :
 - Inclusive B->D decay BF (D momentum dependent)
 - Inclusive B->lepton decay BF
 - Semileptonic D decay BF (Cascade background)
 - $B \rightarrow D^{(*)} \tau \nu$ decay BF
 - cosBY correction to adjust beam energy effect.
 - $B \rightarrow D^{**} / \nu$ FF re-weighting (ISGW2 -> LLSW)
- Fitting stage
 - The items goes into coefficients :
 - Charm decay BF $(D^{**}/D^*/D \text{ decay BF})$
 - B^+/B^0 production ratio
 - FF parameters as explained on page 7
 - Slope of $B \rightarrow DI\nu$; Slope, R_1 and R_2 of $B \rightarrow D^*I\nu$

Fitting strategy – Free parameters

- Isospin symmetry on *B* decays.
- 14 free parameters in the fitting
 - 3 BF
 - $B^+ > DI \nu$
 - $\bullet B^+ > D^* / \nu$
 - Sum of $B^+ > D^{**}/\nu$ and non-resonant $D^{(*)}\pi/\nu$
 - 4 FF parameters
 - Slope of $B -> Dl\nu$
 - Slope, R_1 and R_2 of $B \rightarrow D^*/\nu$
 - *B*⁺/*B*⁰ production ratio
 - 6 background coefficients (3 each for D^0 and D^+)
 - Uncorrelated
 - Uncorrelated cascade
 - Correlated cascade

$B^+ - > D^{**} / \nu$ and $D^{(*)} \pi / \nu$

• We fix ratios between these decay modes :

 $\mathcal{B}(B^+ \to \bar{D}_0^{*0} \ell^+ \nu) = 0.0045 \pm 0.0009$

 $\mathcal{B}(B^+ \to \bar{D}_1^0 \ell^+ \nu) = 0.0054 \pm 0.0006$

 $\mathcal{B}(B^+ \to \bar{D}_1^{\prime 0} \ell^+ \nu) = 0.0085 \pm 0.0020$

- $\mathcal{B}(B^+ \to \bar{D}_2^{*0}\ell^+\nu) = 0.0042 \pm 0.0008$
- $\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu) = 0.0019 \pm 0.0012$

 $\mathcal{B}(B^+ \to \bar{D}^0 \pi^0 \ell^+ \nu) = 0.0010 \pm 0.0006$

 $\mathcal{B}(B^+ \to D^{*-} \pi^+ \ell^+ \nu) = 0.0006 \pm 0.0004$

 $\mathcal{B}(B^+ \to \bar{D}^{*0} \pi^0 \ell^+ \nu) = 0.0003 \pm 0.0002$

Then float the sum of these branching fractions.

BF renormalization

- BF renormalization does not have to be a necessary piece of our analysis.
- If all systematic uncertainty of fitted BFs are well understood and small, we don't need this.
- But, in reality...
 - Sum of BFs is 9% smaller than inclusive BF.
 - Some systematic uncertainties are much smaller after renormalization.