Global Fit for Branching Fractions and Form Factor Slope of $B - > D^{(*)} / \nu$ Decays

- Muon mass effect
- Electron and muon combined results
- Radiative correction systematics
- Details are in BAD1586 V10

Method

- Reconstruct only *DI* pairs.
- 3-D fit by Lepton momentum, D momentum and cosThetaBY.
- Simultaneously fit to both D⁰/ and D⁺/ distributions.
- Fit for
 - $B \rightarrow D \nu$ BF and FF slope
 - $B \rightarrow D^* / \nu$ BF and FF parameters (slope, (R_1 and R_2))
- Isospin constraint on $B \rightarrow D^{(*)}(\pi) / \nu$ decays.

3D fit (projection plots)

The fit uses 3D binning ~240 bins each for $D^0/$ and $D^+/$

Muon mass effect (1)

- Muon mass was neglected in decay rate formula (details in BAD1586 V10).
- Need additional terms in phase space and FF.

Muon mass effect (2)

 We included muon mass effect only in B -> Dlν and B -> D^{*}lν

	Result	Difference from Nominal fit
ρ_D^2	$1.132 \pm 0.066 \ (5.9 \ \%)$	-3.25 %
ρ^2	$1.326 \pm 0.064 \ (4.8 \ \%)$	-3.35 %
R_1	$1.527 \pm 0.104 \ (6.8 \ \%)$	-4.17 %
R_2	0.684 ± 0.084 (12.3 %)	+7.94 %
$\mathcal{B}(B^+ \rightarrow \bar{D}^0 \ell^+ \nu)$	$0.02282 \pm 0.00042~(1.9~\%)$	-0.24 %
$\mathcal{B}(B^+\to \bar{D}^{*0}\ell^+\nu)$	$0.05272 \pm 0.00056 \ (1.1 \ \%)$	+0.54 %
$\chi^2/ndof$ (P-value)	492/464 (0.17)	

Effect on FF parameters is not small

Results (1)

Electron results $\rho_D^2 = 1.27 \pm 0.05(\text{stat.}, 3.6\%) \pm 0.08(\text{syst.}, 6.2\%)$ $\rho^2 = 1.22 \pm 0.02(\text{stat.}, 2.0\%) \pm 0.07(\text{syst.}, 5.5\%)$ $\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu) = 0.0243 \pm 0.0003(\text{stat.}, 1.4\%) \pm 0.0015(\text{syst.}, 6.4\%)$ $\mathcal{B}(B^+ \to \bar{D}^{*0} \ell^+ \nu) = 0.0538 \pm 0.0003(\text{stat.}, 0.6\%) \pm 0.0026(\text{syst.}, 4.9\%)$

 $\begin{array}{ll} & \mathsf{Muon\ results} \\ \rho_D^2 = 1.16 \pm 0.06(\mathrm{stat.}, 5.3\%) \pm 0.09(\mathrm{syst.}, 7.7\%) \\ \rho^2 = 1.23 \pm 0.03(\mathrm{stat.}, 2.4\%) \pm 0.06(\mathrm{syst.}, 5.3\%) \\ & \mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu) = 0.0230 \pm 0.0004(\mathrm{stat.}, 1.7\%) \pm 0.0017(\mathrm{syst.}, 7.4\%) \\ & \mathcal{B}(B^+ \to \bar{D}^{*0} \ell^+ \nu) = 0.0519 \pm 0.0004(\mathrm{stat.}, 0.7\%) \pm 0.0038(\mathrm{syst.}, 7.4\%) \\ \end{array}$

- Electron and muon results are consistent.
- Slopes and *D* BF agree with previous Babar measurements.
- D* BF has a fair agreement with previous Babar measurements.

Results (2)

- Electron and muon combined results $\begin{aligned} \rho_D^2 &= 1.23 \pm 0.04(stat.) \pm 0.07(syst.) \\ \rho^2 &= 1.21 \pm 0.02(stat.) \pm 0.07(syst.) \\ \mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu) &= 0.0238 \pm 0.0003(stat.) \pm 0.0014(syst.) \\ \mathcal{B}(B^+ \to \bar{D}^{*0} \ell^+ \nu) &= 0.0529 \pm 0.0002(stat.) \pm 0.0025(syst.) \\ & (\text{We fit for common values, } \chi^2/\text{ndf} = 2.0/4) \\ \mathcal{G}(1)|V_{ab}| &= 0.0442 \pm 0.0008(stat.) \pm 0.0025(syst.) \\ \mathcal{F}(1)|V_{ab}| &= 0.0355 \pm 0.0002(stat.) \pm 0.0013(syst.) \end{aligned}$
- G(1)|Vcb| is twice as precise as world average.
- F(1)|Vcb| is as good as existing best measurement.

Comparison with others

Systematic uncertainties

Electron

item	$ ho_D^2$	ρ^2	$\mathcal{B}(D^0\ell\nu)$	$\mathcal{B}(D^{*0}\ell\nu)$
FF total	1.45	2.70	0.13	0.24
$D^{(*)}\pi\ell\nu$ total	3.12	2.18	2.23	1.62
$D^{(*)}\pi\pi\ell\nu$ total	2.56	2.96	0.82	1.84
Input parms total	2.85	2.44	3.05	2.76
Corrections total	3.35	1.71	5.04	3.13
Background total	0.42	0.62	0.44	0.21
Total	6.16	5.48	6.37	4.85

item	ρ_D^2	ρ^2	$\mathcal{B}(D^0\ell\nu)$	$\mathcal{B}(D^{*0}\ell\nu)$
FF total	1.50	2.81	0.17	0.26
$D^{(*)}\pi\ell\nu$ total	4.15	2.27	2.26	1.75
$D^{(*)}\pi\pi\ell\nu$ total	3.41	2.68	0.89	1.77
Input parms total	3.08	2.32	3.01	2.80
Corrections total	4.29	1.36	6.33	6.31
Background total	0.67	0.59	0.51	0.28
Total	7.71	5.27	7.44	7.35

Muon

- Main source of systematic errors :
 - Not well measured $B \rightarrow D^{**}/\nu$ BF and FF parameters
 - Unknown $B \rightarrow D^{(*)} \pi \pi I \nu$ component
 - Input parameters : D^{*+} BF, R_1 and R_2
 - Corrections : Electron PHOTOS and Muon PID

Radiative Corrections (1)

Comparison with and without PHOTOS
 Electron momentum
 Muon momentum

Radiative Corrections (2)

- KLOR = radiative correction for K decays.
- BLOR = B decay version of KLOR
 - Florian Bernlochner is working on this.

Radiative Corrections (3)

- Plan for systematic error estimate :
 - Replace MC histograms by BLOR and perform fit.
 - Difference from nominal fit can be systematic uncertainty.

To do list

- Further systematic study on
 - Radiative correction
 - Lepton PID
- Write PRD draft.

Comparison with previous measurements

- Previous Babar measurements
 - $B^0 \to D^* / \nu$ mode (arXiv:0705.4008[hep-ex])
 - Slope = $1.191 \pm 0.048 \pm 0.028$
 - $B^0 \rightarrow D^* / \nu$ mode (arXiv:0712.3493[hep-ex])
 - Slope = $1.15 \pm 0.06 \pm 0.08$
- Our result
 - Slope = 1.227 ± 0.083

R_1 and R_2 floated results

• R_1 and R_2 floated results

$$\rho_D^2 = 1.19 \pm 0.04(stat.) \pm 0.07(syst.)$$

$$\rho^2 = 1.33 \pm 0.04(stat.) \pm 0.09(syst.)$$

$$R_1 = 1.55 \pm 0.07(stat.) \pm 0.14(syst.)$$

$$R_2 = 0.66 \pm 0.05(stat.) \pm 0.09(syst.)$$

$$\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu) = 0.0236 \pm 0.0003(stat.) \pm 0.0013(syst.)$$

$$\mathcal{B}(B^+ \to \bar{D}^{*0}\ell^+\nu) = 0.0538 \pm 0.0004(stat.) \pm 0.0024(syst.)$$

$$\mathcal{G}(1)|V_{cb}| = 0.0432 \pm 0.0009(stat.) \pm 0.0024(syst.)$$

$$\mathcal{F}(1)|V_{cb}| = 0.0353 \pm 0.0003(stat.) \pm 0.0010(syst.)$$

Results without isospin constraints.

• Results without isospin constraints on $B \rightarrow D \nu$ and $B \rightarrow D^* \nu$ decays.

 $\rho_D^2 = 1.16 \pm 0.10(8.7\%)$ $\rho^2 = 1.32 \pm 0.10(7.3\%)$ $R_1 = 1.53 \pm 0.15(10.0\%)$ $R_2 = 0.67 \pm 0.10(15.1\%)$ $\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu) = 0.0232 \pm 0.0013(5.8\%)$ $\mathcal{B}(B^0 \to D^- \ell^+ \nu) = 0.0217 \pm 0.0013(6.0\%)$ $\mathcal{B}(B^+ \to \bar{D}^{*0}\ell^+\nu) = 0.0525 \pm 0.0032(6.0\%)$ $\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu) = 0.0525 \pm 0.0056(10.7\%)$

 $V_{\rm ch}$

		V_{cb}
$\mathcal{G}(1)$	R_1 and R_2 fixed	$0.0411 \pm 0.0008 \pm 0.0023 \pm 0.0009$
	\mathbb{R}_1 and \mathbb{R}_2 floated	$0.0402 \pm 0.0008 \pm 0.0022 \pm 0.0009$
$\mathcal{F}(1)$	R_1 and R_2 fixed	$0.0384 \pm 0.0002 \pm 0.0014 \pm 0.0009$
	R_1 and R_2 floated	$0.0382 \pm 0.0005 \pm 0.0015 \pm 0.0009$

We used (Okamoto *et.al.*, hep-lat/0409116)

$G(1) = 1.074 \pm 0.018 \pm 0.016$

and (Raiho, arXiv:0710.1111[hep-lat]) $\mathcal{F}(1) = 0.924 \pm 0.012 \pm 0.019$