Average Results of Babar Semileptonic $B - > D^{(*)} / \nu$ Decay Measurements.

Babar Physics Workshop, June 30, 2008

> Kenji Hamano, University of Victoria

Motivation

- Since last year 4 Babar measurements of $B -> D^{(*)}/\nu$ decays have come out :
 - $B^0 > D^{*-}I^+ \nu$ FF, BF and $F(1) |V_{cb}|$ (Exclusive reconstruction) (Phys.Rev.D77,032002(2008))
 - $B^{-} > D^{*0}e^{-}\nu$ FF, BF and $F(1)|V_{cb}|$ (Exclusive reconstruction) (Phys.Rev.Lett.100,231803(2008))
 - $B \rightarrow D^{(*)}/\nu$ BF (Hadronic tag)

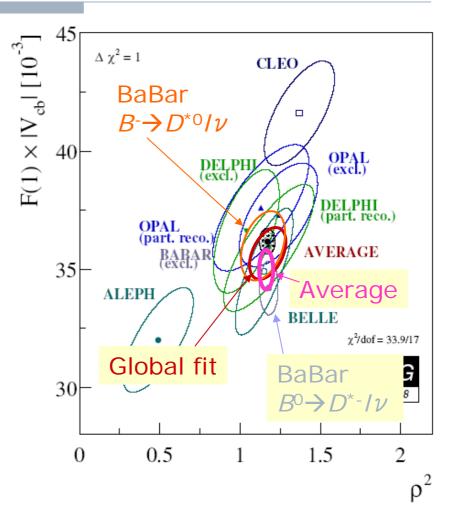
(Phys.Rev.Lett.100,151802(2008))

- $B \to D^{(*)} / \nu$ FF, BF and $F(1) | V_{cb} |$ (Global fit) (BAD1781)
- It is a good time to have Babar average results.
- These analysis use different and complementary methods.
 - One analysis is not an update of another analysis.
 - Average should be unbiased results.

Method

- Scale previous results by new numbers :
 - Charm decay branching fractions.
 - $Y(4S) -> B^+B^-/B^0\overline{B}^0$ ratio.
- Impose isospin symmetry.
- Construct covariance matrix :
 - Correlations between statistical uncertainties are assumed to be negligible.
 - Assume 100 % correlation between systematic errors (see next page for detail).
- Minimize χ^2 by assuming one real value.
- Since we take 100 % systematic correlation, we are on conservative side.

Systematic correlation


- Correlations between systematic errors :
 - Systematic errors are categorized into
 - Detector effect
 - Soft pion reconstruction
 - Backgrounds
 - R1 and R2
 - BF $(D^{*0} > D^0 \pi^0)$
 - $BF(D^{*+}->D^0\pi^+)$
 - BF $(D^+ > K^- \pi^+ \pi^+)$
 - BF($D^0 > K^- \pi^+$)
 - B lifetime ratio
 - $Y(4S) -> B^+B^-/B^0\overline{B}^0$ ratio.
 - B counting
 - Beam energy correction
 - Radiative corrections
 - B tagging
 - Take quadrature sum within each category.
 - Assume 100 % correlation between quadrature sums of different analysis.

Results.

- Global fit results :
 - $D \text{ slope} = 1.23 \pm 0.04 \pm 0.07$
 - D^* slope = 1.21 ± 0.02 ± 0.07
 - $BF(B^+ > D/\nu) = (2.38 \pm 0.03 \pm 0.13) \%$
 - $BF(B^+ > D^*/\nu) = (5.32 \pm 0.02 \pm 0.21) \%$
 - $F(1)|V_{cb}| = (35.6 \pm 0.2 \pm 1.2) \times 10^{-3}$
- Average results :
 - $BF(B^+ -> D/\nu) = (2.35 \pm 0.10) \% (\chi^2 \text{ probab.} = 0.95)$
 - D^* slope = 1.19 ± 0.05 (χ^2 probab.=0.87)
 - $BF(B^+ > D^* / \nu) = (5.49 \pm 0.20) \% (\chi^2 \text{ probab.} = 0.17)$
 - $F(1)|V_{cb}| = (35.0 \pm 1.0) \times 10^{-3} (\chi^2 \text{ probab.}=0.67)$
- All χ^2 probab. are good => good agreements between different analysis.

Comparison with others

- Good agreement with world average.
- Correlation is unknown → No correlation is assumed to make the ellipse.

Other input

- $B^0 > D^* / \nu$ (Phys.Rev.D77,032002(2008))
 - D^* slope = 1.191 ± 0.048 ± 0.028
 - $BF(B^{0} > D^{*}/\nu) = (4.96 \pm 0.04 \pm 0.34) \%$
 - $F(1)|V_{cb}| = (34.4 \pm 0.3 \pm 1.1) \times 10^{-3}$
- $B^{-} > D^{*0}e^{-}\nu$ (Phys.Rev.Lett.100,231803(2008))
 - D^* slope = 1.16 ± 0.06 ± 0.08
 - $BF(B^+ > D^*/\nu) = (5.56 \pm 0.08 \pm 0.41) \%$
 - $F(1)|V_{cb}| = (35.9 \pm 0.6 \pm 1.4) \times 10^{-3}$
- $B \to D^{(*)} / \nu$ (B_{reco}) (Phys.Rev.Lett.100,151802(2008))
 - $BF(B^+ -> DI\nu) = (2.33 \pm 0.09 \pm 0.09) \%$
 - $BF(B^{0} D/\nu) = (2.21 \pm 0.11 \pm 0.12) \%$
 - $BF(B^+ > D^*/\nu) = (5.83 \pm 0.15 \pm 0.30) \%$
 - $BF(B^{0} >D^{*}/\nu) = (5.49 \pm 0.16 \pm 0.25) \%$