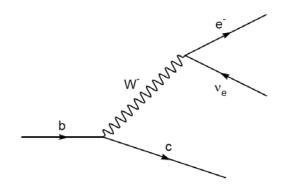
Measurement of the Semileptonic $B->D^{(*)}I\nu$ Decays Using a Global Fit

Babar Collaboration Wide Talk, July 1, 2008

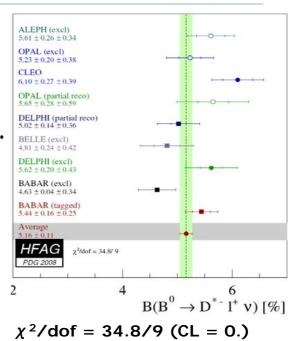
> Kenji Hamano, University of Victoria

Semileptonic B decays and $|V_{cb}|$

- Semileptonic B decays
 - Inclusive decay BF~10%
 - $B > X_c / \nu$


 $(X_c : meson system including$

a charm quark)


•
$$B - > DI\nu \sim 2.5\%$$

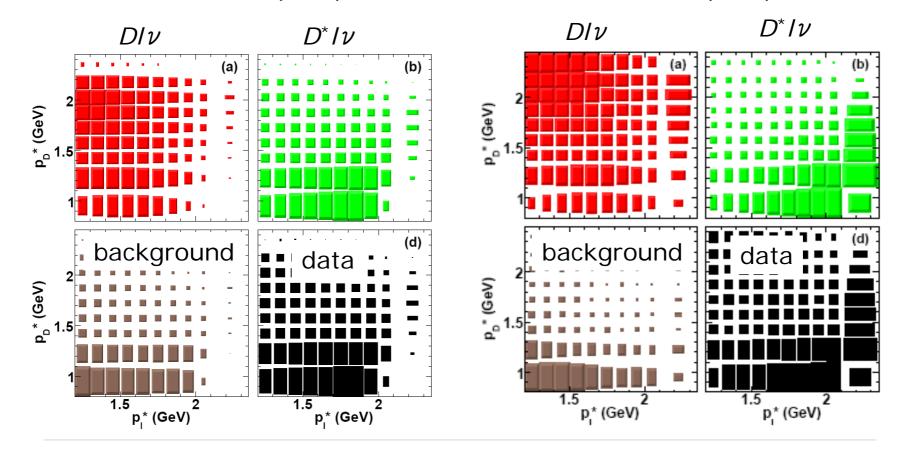
- $B > D^* / \nu \sim 5.5\%$
- $B > D^{(*)} \pi I \nu$ (this include $B > D^{**} I \nu$) ~1%
- $B > D^{(*)} \pi \pi I \nu \sim 1\%$?
- Best mode to measure $|V_{cb}|$
 - Experimentally accessible : Branching fraction~10%
 - Theoretically accessible: Heavy quark symmetry can be used to access non-perturbative QCD.

Motivation

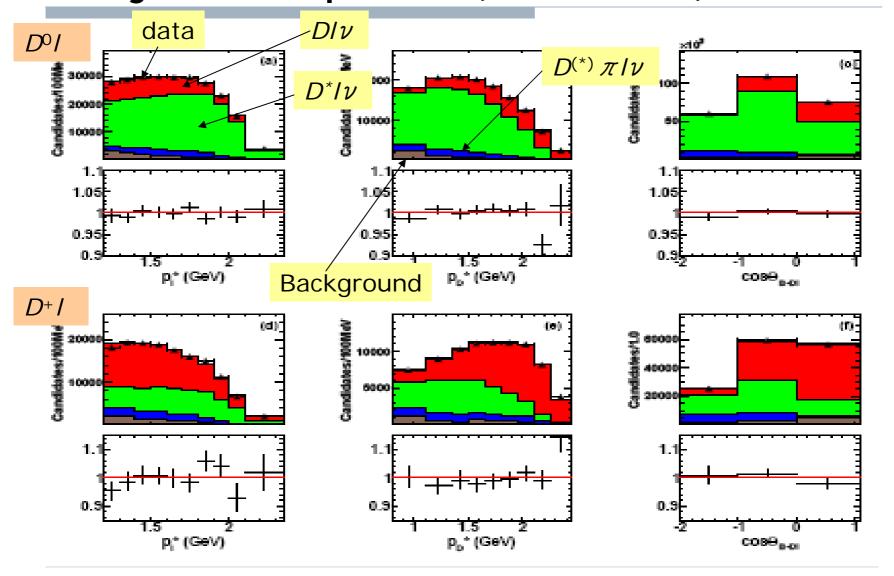
- Poorly measured $B->Dl\nu$ mode.
 - Current accuracy is ~10-15%
- Inconsistency in $B->D^*I\nu$ mode.
 - $B^0 -> D^{*-}I^+ \nu$ branching fraction disagree between measurements.
 - D^* -> $D\pi$ reconstruction issue :
 - The π is very soft (transverse momentum < 200MeV) and difficult to reconstruct.

- Inclusive exclusive disagreement.
 - $|V_{cb}|$ from inclusive and exclusive measurements differ 2σ .
 - Sum of $B->Dl\nu$, $B->D^*l\nu$ and $B->D^{(*)}\pi l\nu$ branching fraction does not add up to inclusive branching fraction.

Overview of method


- Reconstruct only D^0I and D^+I pairs.
 - Do not explicitly reconstruct D^* or D^{**} .
 - Free from soft π reconstruction issue.
 - Can access D^* and D^{**} because they feed down to D.
- Use kinematic variables to separate exclusive modes :
 - 3-dimensional (3D) binning in
 - Lepton momentum
 - D momentum
 - cosTheta(B-DI)
 - = cosine of the angle between B and DI pair, assuming decay was B-> $DI\nu$.
- Simultaneously fit to D^0I and D^+I distributions with the sum of 3D MC histograms.
 - Fit for $B -> DI\nu$ and $B -> D^*I\nu$ branching fractions and form factor parameters.
 - Isospin constraints on $B \to D^{(*)}(\pi)/\nu$ decays.

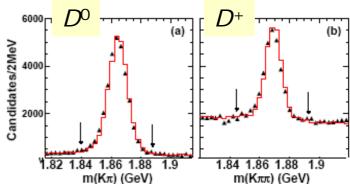
2D distributions


2D distributions of candidates on (p_l^*, p_D^*) plane to show separation power.

-1 < cosTheta(B-DI) < 0

0 < cosTheta(B-DI) < 1.1

Projection plots (Electron)



Event selection

- Continuum background is subtracted using off-peak data.
- Pre-selection of events
 - Cuts are adjusted on MC to maximize statistical significance of $Dl\nu$ yields after continuum subtraction.
 - Cuts on B and D vertex probabilities to suppress combinatorial background.

 Cuts on the angle between thrust axis of "DI pair" and "other charged tracks and neutrals" to suppress continuum background.

- Combinatorial background is subtracted using D mass sidebands.
- To reduce $B\overline{B}$ backgrounds :
 - $p_I^* > 1.2 \text{ GeV}, p_D^* > 0.8 \text{ GeV}$
 - -2 < cosTheta(B-DI) < 1.1
- Run1-4, 207fb⁻¹ of data was used.

Exclusive decay rates and form factor

- Semileptonic decay rate is

 - This J(w) is the form factor part
 - $J(w) \propto F(1) [1 \rho^2 (w-1) + ...]$ (0<(w-1)<0.6)
 - ρ^2 is the form factor slope.
 - w is the velocity transfer
 - $W = V_B^* V_D = \rho_B^* \rho_D / (m_B^* m_D)$
 - Related to momentum transfer q^2 .
- Putting everything together

■
$$\Gamma \propto (F(1)|V_{cb}|)^2 [1 - \rho^2 (w-1) + ...]^2$$
Form factor slope

We can measure only this product. Needs lattice QCD input for F(1) to extract |Vcb|.

CLN parameterization

- We used parameterization based on Caprini-Lellouch-Neubert (Nucl.Phys.B530, 153(1998)).
 - Include higher order of (w-1).
 - Relate curvature and slope using dispersive bounds.
 - Can be expressed with one parameter : slope ρ^2

$$\Gamma \propto (F(1)|V_{cb}|)^2 \times$$

$$[1-8\rho^2z+(51\rho^2-10)z^2+(231\rho^2-91)z^3]^2$$

where

$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$
 (0<(w-1)<0.6)
(0

Fitting Method

$$\chi^2$$
 is given by
$$\chi^2 = \sum_{i} \frac{\left(N_i^{data} - \sum_{j} C_j M_{ij}^{MC}\right)^2}{\left(\sigma_i^{data}\right)^2 + \sum_{j} \left(C_j \sigma_{ij}^{MC}\right)^2}$$
• i = bin

- *i*= bin
- N_i = number of data candidates in *i*-th bin, afer off-peak subtraction.
- M_{ij} = number of simulated candidates of mode j in i-th bin.
- j = exclusive decay modes.
 - $j=1: Dl\nu$, $j=2: D^*l\nu$ etc.
- σ = corresponding systematic uncertainties.
- Coefficients C_i include variables to fit for : $Dl\nu$ and $D^*l\nu$ branching fractions and form factor slopes.
- Fit to electron and muon separately and combine them.

$B - > D^{**} / \nu$ and $B - > D^{(*)} \pi \pi / \nu$

- $B->D^{**}I\nu$
 - We use HQET-inspired Leibovich-Ligeti-Stewart-Wise model (Phys.Rev.D57,308(1998)).
 - This is the first time this model was used in Babar analysis.
- $B > D^{(*)} \pi \pi I \nu$
 - This is completely unknown decay mode. BF(B-> $D^{(*)}\pi\pi I\nu$) = (1.1 \pm 1.1) % is assumed to saturate inclusive BF.
 - We generate decays of the type :

$$B->X_c I \nu -> D^{(*)} \pi \pi I \nu$$
,
 $B->Y_c I \nu -> D^{(*)} \rho I \nu -> D^{(*)} \pi \pi I \nu$

We assume 4-intermediate resonances:

name	mass (GeV)	width (GeV)	$_{ m spin}$
X_c	2.61	0.3	0
X_c^*	2.61	0.3	1
Y_c	2.87	0.1	0
Y_c^*	2.87	0.1	1

Mass just above $D^*\pi\pi$ threshold

Mass just above $D^* \rho$ threshold

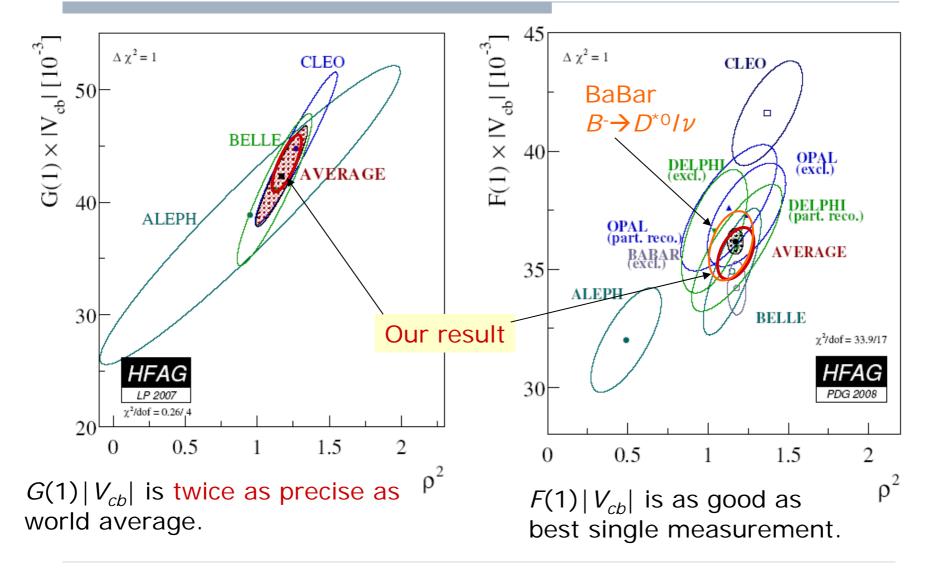
Systematic uncertainties (summary)

- Main source of systematic errors :
 - Not well measured $B -> D^{(*)} \pi I \nu$ branching fractions and form factors.
 - Unknown $B -> D^{(*)} \pi \pi I \nu$ component.
 - D^* and D decay branching fractions.
 - Electron : Radiative correction.

Muon: Particle identification.

Systematic uncertainties (all)

			Ele	ctron sai	nple				M	uon sam	ple	
item	ρ_D^2	$\rho_{D^*}^2$	$\bar{D}^{0}\ell^{+}\nu$	$\bar{D}^{*0}\ell^{+}\nu$	$\mathcal{G}(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $	ρ_D^2	$\rho_{D^*}^2$				$\mathcal{F}(1) V_{cb} $
R'_1	0.44	2.77	0.69	-0.38	0.60	0.71	0.46	2.69	0.72	-0.40	0.61	0.70
R_2^{\prime}	-0.37	1.04	-0.18	0.30	-0.30	0.49	-0.42	0.97	-0.19	0.30	-0.31	0.48
D** slope	-1.04	-2.64	-0.09	-0.09	-0.64	-0.90	-0.93	-2.74	-0.12	-0.10	-0.56	-0.96
D ^{**} FF approximation	-1.01	0.56	-0.10	0.22	-0.63	0.29	-1.18	0.60	-0.11	0.23	-0.68	0.32
$B(B^+ \rightarrow D^{(*)}\pi \ell \nu)$	0.41	-0.36	-0.09	-0.88	0.19	-0.56	0.75	-0.41	0.01	-0.95	0.41	-0.61
$f_{D_2^*/D_1}$	-0.22	0.09	-0.23	0.10	-0.24	0.08	-0.28	0.10	-0.25	0.12	-0.28	0.09
$f_{D_0^*D\pi/D_1D_2^*}$	-2.55	1.49	-1.91	1.19	-2.46	1.08	-3.44	1.63	-1.94	1.27	-2.85	1.18
$f_{D_1^*D^*\pi/D_1D_2^*}$	1.38	-0.88	1.03	-0.59	1.30	-0.59	1.85	-0.92	1.06	-0.65	1.51	-0.63
$f_{D\pi/D_0^*}$	-0.80	-1.25	0.33	0.16	-0.30	-0.33	-0.75	-1.20	0.29	0.18	-0.26	-0.32
$f_{D^*\pi/D^*_1}$	-0.18	-0.05	-0.12	0.19	-0.16	0.08	-0.26	-0.04	-0.14	0.21	-0.21	0.09
NR D^*/D ratio	I	-0.17	0.26	-0.13	0.53	-0.09	0.81		0.26	-0.14	0.56	-0.11
$\mathcal{B}(B^+ \xrightarrow{\prime} D^{(*)}\pi\pi\ell\nu)$	I	-2.03	0.25	-1.30	0.78	-1.31		-1.77	0.40	-1.22	1.18	-1.20
X^*/X an Y^*/Y ratio		-1.18	0.09	-0.28	0.38	-0.53	1	-1.04	0.08	-0.25	0.41	-0.47
X/Y and X^*/Y^* ratio		-0.85	0.21	-0.66	0.52	-0.61		-0.79		-0.64	0.67	-0.58
$D_{1}^{'} \rightarrow D\pi\pi^{'}$		-1.59	0.74	-1.09	1.60	-1.06		-1.53	0.75	-1.08	1.77	-1.05
$f_{D_2^*}$	-0.07	-0.01	-0.06	0.04	-0.07	0.02	-0.09	-0.00	-0.06	0.04	-0.08	0.02
$\mathcal{B}(D^{*+} \rightarrow D^0\pi^+)$	0.67	-0.01	0.42	-0.34	0.60	-0.17	0.73	-0.01	0.40	-0.34	0.59	-0.17
$\mathcal{B}(D^0 \to K^-\pi^+)$	0.62	0.01	-0.21	-1.57	0.26	-0.78	0.82	0.10	-0.27	-1.61	0.31	-0.77
$\mathcal{B}(D^+ \rightarrow K^-\pi^+\pi^+)$	-1.27	-0.40	-2.03	0.30	-1.74	0.02	-1.23	-0.41	-1.96	0.27	-1.62	-0.00
τ_{B+}/τ_{B0}	0.22	0.17	0.61	0.27	0.43	0.19	0.19	0.17	0.57	0.28	0.39	0.20
f_{+-}/f_{00}	0.81	0.43	0.63	-0.54	0.78	-0.13	0.82	0.49	0.54	-0.53	0.70	-0.10
Number of $B\overline{B}$ events	0.00	-0.00	-1.11	-1.11	-0.55	-0.55	0.00	-0.00	-1.11	-1.11	-0.55	-0.55
Off-peak Luminosity	0.04	0.01	-0.02	-0.00	0.02	0.00	0.06	0.00	-0.02	-0.00	0.02	-0.00
B momentum distribution	-0.89	0.63	1.28	-0.55	-1.11	0.47	1.19	-0.09	1.24	-0.66	1.26	-0.36
Lepton PID eff.	0.47	0.17	1.20	0.83	0.87	0.47	3.14	0.09	5.08	5.86	1.99	2.93
Lepton mis-ID	0.03	0.01	-0.01	-0.01	0.01	-0.00	2.49	0.71	-0.57	-0.51	1.03	-0.01
Kaon PID	0.06	0.83	0.27	0.24	0.17	0.39	0.96	0.72	0.34	0.29	0.68	0.39
Tracking eff.	-0.90	-0.46	-3.29	-2.02	-2.17	-1.16	-0.51	-0.30	-3.30	-2.11	-1.93	-1.16
Radiative corrections		-1.08	-2.89	-0.71	-2.99	-0.70	-0.71	-0.62	-0.82	-0.24	-0.78	-0.33
Bremsstrahlung		-0.00		-0.29	-0.03	-0.14	0.00	0.00	0.00	0.00	0.00	0.00
Vertexing		-0.68	0.63	0.59	0.78	0.07		-0.78	0.95	0.54	1.37	0.01
Background	1.32	1.12	0.63	0.34	1.05	0.52	1.55	1.10	0.67	0.38	1.15	0.49
Total	5.90	5.84	5.97	4.09	5.91	3.29	7.69	5.67	7.29	7.14	6.01	4.33


Results

Parameters	De sample	$D\mu$ sample	combined result
ρ_D^2 $\rho_{D^*}^2$	$1.27 \pm 0.05 \pm 0.07$	$1.16 \pm 0.06 \pm 0.09$	$1.23 \pm 0.04 \pm 0.07$
$\rho_{D^*}^2$	$1.22 \pm 0.02 \pm 0.07$	$1.23 \pm 0.03 \pm 0.07$	$1.21 \pm 0.02 \pm 0.07$
$\mathcal{B}(\bar{D}^{0}\ell^{+}\nu)(\%)$ $\mathcal{B}(\bar{D}^{*0}\ell^{+}\nu)(\%)$	$2.43 \pm 0.03 \pm 0.14$	$2.30 \pm 0.04 \pm 0.17$	$2.38 \pm 0.03 \pm 0.13$
$B(\bar{D}^{*0}\ell^{+}\nu)(\%)$	$5.38 \pm 0.03 \pm 0.22$	$5.19 \pm 0.04 \pm 0.37$	$5.32 \pm 0.02 \pm 0.21$
χ^2 /n.d.f. (probability)	425/470 (0.93)	498/466 (0.15)	2.1/4 (0.71)

- Good χ^2 .
- Electron and muon results are consistent.
- Combined results agree with world average.

$$D/\nu \rightarrow \mathcal{G}(1)|V_{cb}| = (44.2 \pm 0.8 \pm 2.4) \times 10^{-3}$$

 $D^*/\nu \rightarrow \mathcal{F}(1)|V_{cb}| = (35.6 \pm 0.2 \pm 1.2) \times 10^{-3}$.

Comparison with others

$|V_{cb}|$

$$D^*\ell\nu: |V_{cb}| = (38.2 \pm 0.2 \pm 1.3 \pm 0.9) \times 10^{-3}$$

$$D\ell\nu: |V_{cb}| = (41.1 \pm 0.8 \pm 2.2 \pm 0.9) \times 10^{-3}.$$

- These two results agree.
- We used (Okamoto et.al., hep-lat/0409116)

$$G(1) = 1.074 \pm 0.018 \pm 0.016$$

and (Laiho, arXiv:0710.1111[hep-lat])

$$\mathcal{F}(1) = 0.924 \pm 0.012 \pm 0.019$$

Inclusive average (HFAG, Kinetic Scheme)

$$|V_{cb}| = (41.91 \pm 0.19 \pm 0.28 \pm 0.59) \times 10^{-3}$$

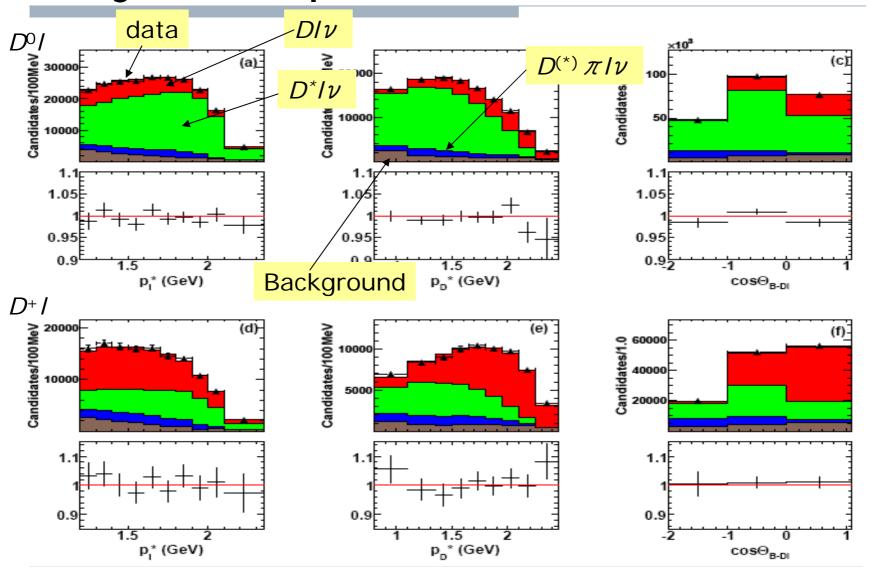
Averaging with other Babar results.

- We average over Babar measurements :
 - [6] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 100, 151802 (2008).
 - [9] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 77, 032002 (2008).
 - [10] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 100, 231803 (2008).
- to get

$${\cal B}(B^- o D^{*0} \ell \overline{
u}) = (5.49 \pm 0.20)\% \quad (\chi^2 \, {\rm probab.} = 0.17)$$
 $ho_{D^*}^2 = 1.19 \pm 0.05 \quad (\chi^2 \, {\rm probab.} = 0.87)$ ${\cal F}(1) |V_{cb}| = (35.0 \pm 1.0) \times 10^{-3} \quad (\chi^2 \, {\rm probab.} = 0.67)$ ${\cal B}(B^- o D^0 \ell \overline{
u}) = (2.35 \pm 0.10)\% \quad (\chi^2 \, {\rm probab.} = 0.95)$

Details are in BAD1586

Summary


We used global fit to determine

```
Form factor slopes :  \begin{array}{ll} \rho_D^2 &= 1.23 \pm 0.04 \pm 0.07 \\ \rho_{D^*}^2 &= 1.21 \pm 0.02 \pm 0.07 \end{array}
```

Branching fractions : ${\cal B}(B^+ \to \bar D^0 \ell^+ \nu) = (2.38 \pm 0.03 \pm 0.13)\% \\ {\cal B}(B^+ \to \bar D^{*0} \ell^+ \nu) = (5.32 \pm 0.02 \pm 0.21)\%$

- This method is quite different from and complementary to previous measurements.
- Results agrees with world average.
- We calculated $G(1)|V_{cb}|$ and $F(1)|V_{cb}|$
 - $G(1)|V_{cb}|$ is twice as accurate as world average.
 - $F(1)|V_{ch}|$ is as precise as best single measurement.
- | V_{cb}| is also extracted.
- Documents :
 - PRD draft : BAD1781
 - Support document : BAD1586

Projection plots (Muon)

