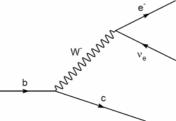
Measurement of the Semileptonic $B -> D^{(*)} / \nu$ Decays Using a Global Fit

PhD Oral Examination Presentation, Oct 1, 2008

Kenji Hamano

Standard Model

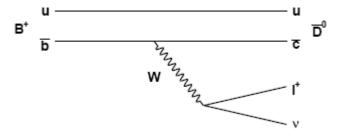

- Successful theory of elementary particles.
- Three families of quarks and leptons
- The CKM matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub}\\ V_{cd} \ V_{cs} \ V_{cb}\\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

- Mix three families of quarks
- Allow flavor changing transitions such as
 - $b \to c + W$
 - Amplitude is proportional to

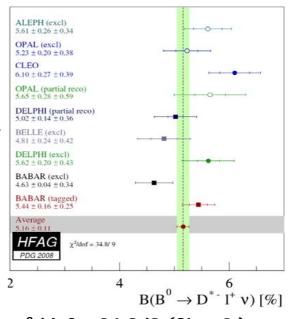
 $|V_{cb}|$ (free parameter of the Standard Model)

Elementary **Particles** Quarks U Carriers photo charm top up h S down strange bottom gluon eptons Force electron muon neutrino neutrino neutrino е L muon tau electron ш ш Three Families of Matter



Semileptonic *B* decays and $|V_{cb}|$

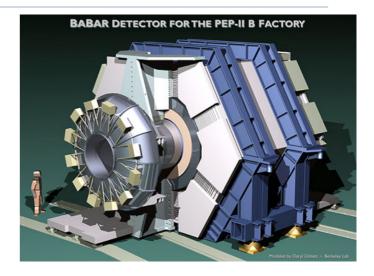
- Semileptonic $B(q\bar{b})$ decays
 - Inclusive decay BF~10%
 - $\bullet B > X_c / \nu$
 - $(X_c:$ meson system including

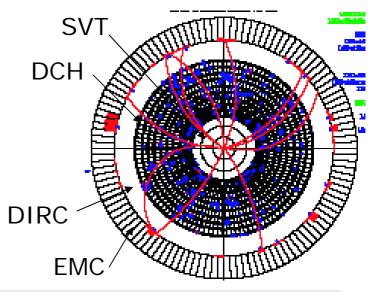

a charm quark)

- Exclusive decays
 - $B -> D / \nu \sim 2.5\%$
 - $B > D^* I \nu \sim 5.5\%$
 - $B \to D^{(*)} \pi I \nu$ (this include $B \to D^{**} I \nu$) ~1%
 - $B \to D^{(*)} \pi \pi I \nu \sim 1\%$?
- Best mode to measure $|V_{cb}|$
 - Experimentally accessible : Branching fraction~10%
 - Theoretically accessible : Heavy quark symmetry can be used to access non-perturbative QCD.

Motivation

- Poorly measured $B -> DI\nu$ mode.
 - Current accuracy is ~10-15%
- Inconsistency in $B \rightarrow D^* I \nu$ mode.
 - $B^0 > D^{*-}I^+ \nu$ branching fraction disagree between measurements.
 - $D^* > D\pi$ reconstruction issue :
 - The π is very soft (transverse momentum < 200MeV) and difficult to reconstruct.




 $\chi^2/dof = 34.8/9 (CL = 0.)$

- Inclusive exclusive disagreement.
 - $|V_{cb}|$ from inclusive and exclusive measurements differ 2σ .
 - Sum of $B -> DI\nu$, $B -> D^*I\nu$ and $B -> D^{(*)}\pi I\nu$ branching fraction does not add up to inclusive branching fraction.

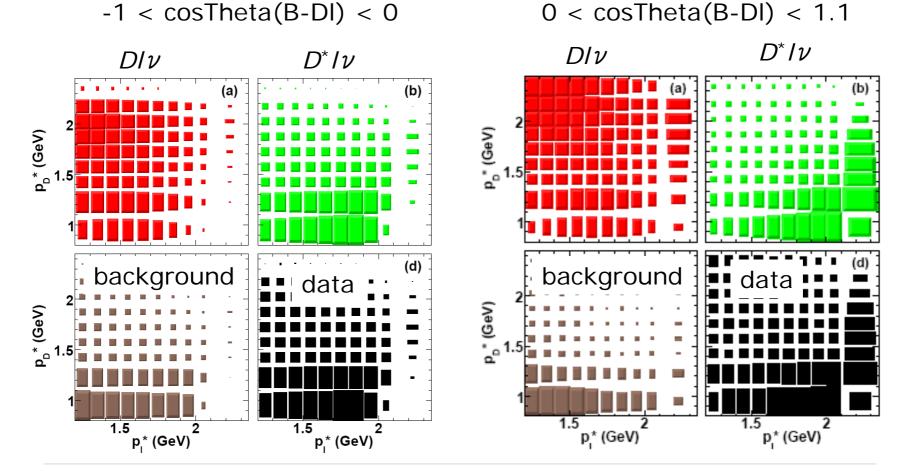
BABAR experiment

- PEP II collider produces BB pairs.
- Babar detector :
- Silicon Vertex Tracker (SVT)
- Drift Chamber (DCH)
 - Charged track reconstruction, PID
 - SVT and DCH are in 1.5 T magnetic field.
- Cerenkov Detector (DIRC)
 - PID
- Electromagnetic Calorimeter (EMC)
 - Photon and electron detection
- Instrumented Flux Return (IFR)
 - Muon and neutral hadron detection

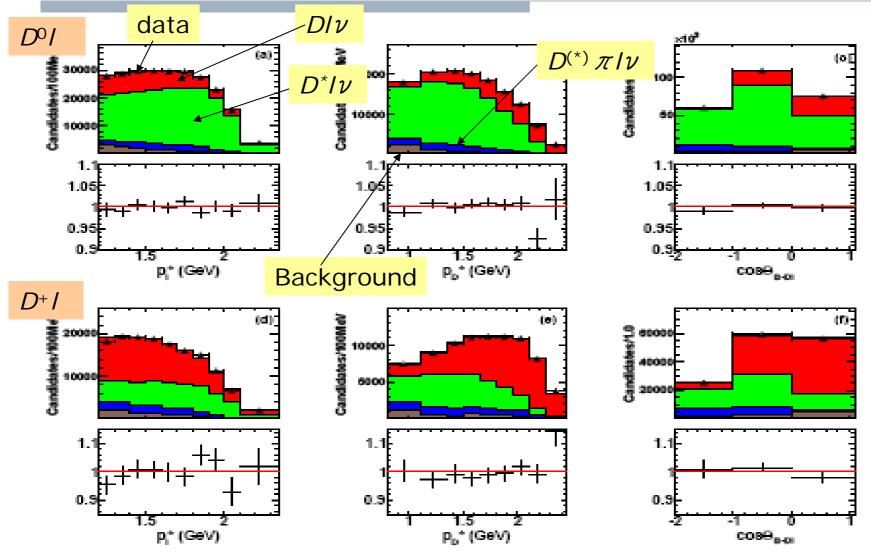
Overview of method

- Reconstruct only $D^0/$ and $D^+/$ pairs. ($l = e \text{ or } \mu$)
 - Do not explicitly reconstruct D^{*} or D^{**}.
 - Free from soft π reconstruction issue.
 - Can access D^* and D^{**} because they feed down to D.
- Use kinematic variables to separate exclusive modes :
 - 3-dimensional (3D) binning in
 - Lepton momentum
 - D momentum
 - cosTheta(B-DI)

$$\cos \Theta_{B-Dl} = \frac{2E_B E_{Dl} - m_B^2 - m_{Dl}^2}{2|p_B||p_{Dl}|}$$

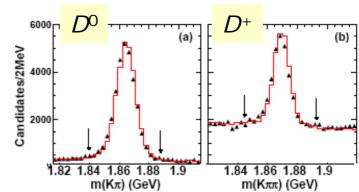

= cosine of the angle between *B* and *DI* pair,

assuming decay was $B -> DI\nu$.


- Simultaneously fit to D⁰ and D⁺ distributions with the sum of 3D MC histograms.
 - Fit for $B -> DI\nu$ and $B -> D^*I\nu$ branching fractions and form factor parameters.
 - Isospin constraints on $B \rightarrow D^{(*)}(\pi)/\nu$ decays.

2D distributions

2D distributions of candidates on (p_I^*, p_D^*) plane to show separation power.



Projection plots (Electron)

Event selection

- Continuum background is subtracted using off-peak data.
- Pre-selection of events
 - Cuts are adjusted on MC to maximize statistical significance of *DIν* yields after continuum subtraction.
 - Cuts on *B* and *D* vertex probabilities to suppress combinatorial background.
 - Cuts on the angle between thrust axis of "DI pair" and "other charged tracks and neutrals" to suppress continuum background.
- Combinatorial background is subtracted using *D* mass sidebands.
- To reduce $B\overline{B}$ backgrounds :
 - $p_{I}^{*} > 1.2 \text{ GeV}, \ p_{D}^{*} > 0.8 \text{ GeV}$
 - -2 < cosTheta(B-DI) < 1.1</p>
- 207fb⁻¹ of data was used. 230 million $B\bar{B}$ -pairs,

Exclusive decay rates and form factor

- Semileptonic decay rate is
 - $\Gamma \propto |V_{cb}|^2 |J(W)|^2$
 - This J(w) is the form factor part
 - $J(w) \propto F(1) [1 \rho^2 (w-1) + ...] \quad (0 < (w-1) < 0.6)$
 - ρ^2 is the form factor slope.
 - w is the velocity transfer

•
$$W = V_B^* V_D = \rho_B^* \rho_D / (m_B^* m_D)$$

- Linearly related to momentum transfer q^2 .
- Putting everything together

•
$$\Gamma \propto (F(1)|V_{cb}|)^2 [1 - \rho^2(w-1) + ...]^2$$

Form factor slope

We can measure only this product.

Needs lattice QCD input for F(1) to extract $|V_{cb}|$.

CLN parameterization

- We used parameterization based on Caprini-Lellouch-Neubert (Nucl.Phys.B530, 153(1998)).
 - Include higher order of (w-1).
 - Relate curvature and slope using dispersive bounds.
 - Can be expressed with one parameter : slope ρ^2

•
$$\Gamma \propto (F(1) | V_{cb} |)^2 \times$$

 $[1-8\rho^2 z + (51\rho^2 - 10)z^2 + (231\rho^2 - 91)z^3]^2$

where

$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \qquad (0 < (w-1) < 0.6) \\ (0 < z < 0.06)$$

Fitting Method

- χ^2 is given by $\chi^{2} = \sum_{i} \frac{\left(N_{i}^{data} - \sum_{j} C_{j} M_{ij}^{MC}\right)^{2}}{\left(\sigma_{i}^{data}\right)^{2} + \sum_{i} \left(C_{j} \sigma_{ij}^{MC}\right)^{2}}$ *i*= bin

- N_i = number of data candidates in *i*-th bin, afer off-peak subtraction.
- M_{ii} = number of simulated candidates of mode *j* in *i*-th bin.
- *j* = exclusive decay modes.
 - $j=1: D \nu, j=2: D^* \nu$ etc.
- σ = corresponding statistical uncertainties.
- Coefficients C_i include variables to fit for : $D \nu$ and $D^* \nu$ branching fractions and form factor slopes.
- Fit to electron and muon separately and combine them after systematic study.

$B - > D^{**} / \nu$ and $B - > D^{(*)} \pi \pi \pi / \nu$

- $\bullet \quad B > D^{**} / \nu$
 - We use HQET-inspired Leibovich-Ligeti-Stewart-Wise model (Phys.Rev.D57,308(1998)).
 - This is the first time this model was used in Babar analysis.
- $B \to D^{(*)} \pi \pi / \nu$
 - This is completely unknown decay mode. $BF(B - > D^{(*)}\pi \pi I\nu) = (1.1 \pm 1.1)$ % is assumed to saturate inclusive BF.
 - We generate decays of the type :

 $B \to X_{c} / \nu \to D^{(*)} \pi \pi / \nu$,

 $B \to Y_c / \nu \to D^{(*)} \rho / \nu \to D^{(*)} \pi \pi / \nu$

We assume 4-intermediate resonances:

name	mass (GeV)	width (GeV)	spin
X_c	2.61	0.3	0
X_{c}^{*}	2.61	0.3	1
Y_c	2.87	0.1	0
Y_c^*	2.87	0.1	1

Mass just above $D^* \pi \pi$ threshold

Mass just above $D^*\rho$ threshold

Systematic uncertainties (summary)

- Main source of systematic errors :
 - Not well measured $B \rightarrow D^{(*)} \pi I \nu$ branching fractions and form factors.
 - Unknown $B \rightarrow D^{(*)} \pi \pi I \nu$ component.
 - D^* and D decay branching fractions.
 - Electron : Radiative correction.
 Muon : Particle identification.

Systematic uncertainties (all)

			Elec	tron sam	le				Mu	ion sample	e	
item	ρ_D^2	$\rho_{D^{*}}^{2}$	$\mathcal{B}(D\ell\overline{\nu})$	$\mathcal{B}(D^*\ell \overline{\nu})$	$\mathcal{G}(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $	ρ_D^2	$\rho_{D^{*}}^{2}$			$\mathcal{G}(1) V_{cb} $	$\mathcal{F}(1) V_{cb} $
R'_1	0.45	2.78	0.69	-0.38	0.60	0.71	0.47	2.70	0.73	-0.40	0.61	0.70
R'_2	-0.38	1.04	-0.18	0.30	-0.31	0.49	-0.43	0.98	-0.19	0.30	-0.32	0.48
D^{**} slope	-1.11	-2.65	-0.09	-0.10	-0.68	-0.91	-1.04	-2.73	-0.12	-0.12	-0.60	-0.97
D ^{**} FF approximation	-0.84	0.58	-0.11	0.20	-0.53	0.29	-1.00	0.61	-0.12	0.22	-0.59	0.31
$B(B^- \rightarrow D^{(*)}\pi \ell \overline{\nu})$	0.42	-0.37	-0.11	-0.88	0.19	-0.56	0.77	-0.43	-0.01	-0.95	0.40	-0.62
$f_{D_{2}^{*}/D_{1}}$	-0.32	0.14	-0.33	0.14	-0.35	0.12	-0.41	0.15	-0.36	0.16	-0.40	0.13
$f_{D_0^* D \pi / D_1 D_2^*}$	-2.16	1.16	-1.52	0.97	-2.02	0.86	-2.91	1.27	-1.53	1.03	-2.34	0.94
$f_{D_1^*D^*\pi/D_1D_2^*}$	1.10	-0.70	0.82	-0.45	1.03	-0.45	1.46	-0.72	0.85	-0.50	1.19	-0.49
$f_{D\pi/D_{0}^{*}}$	-0.75	-1.14	0.31	0.15	-0.27	-0.30	-0.70	-1.10	0.27	0.16	-0.24	-0.29
$f_{D^*\pi/D_1^*}$	-0.18	-0.05	-0.12	0.19	-0.16	0.08	-0.26	-0.04	-0.14	0.21	-0.21	0.09
NR D^*/D ratio	0.70	-0.14	0.27	-0.16	0.53	-0.10	0.83	-0.13	0.27	-0.17	0.58	-0.12
$\mathcal{B}(B^- \rightarrow D^{(*)}\pi \pi \ell \overline{\nu})$	1.14	-2.03	0.25	-1.29	0.77	-1.30	1.87	-1.77	0.40	-1.21	1.18	-1.19
X^*/X and Y^*/Y ratio		-1.18	0.09	-0.28	0.38	-0.52	0.70	-1.04	0.08	-0.24	0.41	-0.47
X/Y and X^*/Y^* ratio	0.73	-0.85	0.20	-0.66	0.51	-0.61	1.03	-0.79	0.24	-0.63	0.66	-0.58
$D_1 \rightarrow D\pi\pi$	2.12	-1.59	0.74	-1.08	1.60	-1.06	2.60	-1.53	0.75	-1.07	1.77	-1.04
$f_{D_2^*}$	-0.11	-0.01	-0.09	0.06	-0.11	0.03	-0.13	-0.01	-0.09	0.06	-0.11	0.03
$\mathcal{B}(D^{*+} \rightarrow D^0\pi^+)$	0.70	-0.01	0.43	-0.34	0.61	-0.17	0.76	-0.01	0.41	-0.34	0.60	-0.17
$\mathcal{B}(D^0 \rightarrow K^- \pi^+)$	0.67	0.01	-0.20	-1.64	0.29	-0.82	0.89	0.10	-0.26	-1.69	0.35	-0.81
$B(D^+ \rightarrow K^- \pi^+ \pi^+)$	-1.37	-0.42	-2.16	0.31	-1.85	0.02	-1.33	-0.43	-2.08	0.28	-1.73	-0.00
$\tau_{B^{-}} / \tau_{B^{0}}$	0.24	0.17	0.62	0.27	0.45	0.19	0.20	0.17	0.58	0.28	0.39	0.20
f_{+-}/f_{00}	0.84	0.44	0.66	-0.54	0.81	-0.13	0.86	0.49	0.57	-0.53	0.74	-0.10
Number of $B\overline{B}$ events		-0.00	-1.11	-1.11	-0.56	-0.55	0.00	-0.00	-1.11	-1.11	-0.56	-0.55
Off-peak Luminosity	0.05	0.01	-0.02	-0.00	0.02		0.06	0.00	-0.02	-0.00	0.02	-0.00
B momentum distrib.	-0.90	0.64	1.28	-0.55	-1.11	0.48	1.22	-0.10	1.25	-0.66	1.28	-0.36
Lepton PID eff	0.48	0.17	1.20	0.83	0.88	0.47	3.19	0.09	5.08	5.86	1.99	2.93
Lepton mis-ID	0.03	0.01	-0.01	-0.01	0.02	-0.00	2.52	0.71	-0.58	-0.50	1.03	-0.01
Kaon PID	0.06	0.83	0.27	0.24	0.17	0.39	0.97	0.73	0.35	0.29	0.69	0.39
Tracking eff	-0.93		-3.31	-2.02	-2.19			-0.30	-3.33	-2.11	-1.96	-1.16
Radiative corrections	1	-1.07	-2.87	-0.72	-2.98	-0.71		-0.62	-0.82	-0.24	-0.78	-0.33
Bremsstrahlung	1	-0.00	-0.13	-0.29	-0.03	-0.14	0.00		0.00	0.00	0.00	0.00
Vertexing	1	-0.67	0.63	0.60	0.78	0.08		-0.77	0.96	0.54	1.38	0.01
Background total	1.39	1.12	0.64	0.34	1.07	0.51	1.58	1.09	0.67	0.38	1.16	0.49
Total	5.76	5.72	5.89	4.04	5.74	3.21	7.48	5.53	7.23	7.10	5.77	4.25

10/01/2008

Results

Parameters	De sample	$D\mu$ sample	combined result		
$\rho_D^2 \\ \rho_{D^*}^2$		$1.15 \pm 0.06 \pm 0.09$			
$\rho_{D^*}^2$	$1.22 \pm 0.02 \pm 0.07$	$1.23 \pm 0.03 \pm 0.07$	$1.21 \pm 0.02 \pm 0.07$		
$\mathcal{B}(D^0 \ell \overline{\nu})(\%)$ $\mathcal{B}(D^{*0} \ell \overline{\nu})(\%)$	$2.41 \pm 0.03 \pm 0.14$	$2.29 \pm 0.04 \pm 0.16$	$2.36 \pm 0.03 \pm 0.12$		
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$	$5.42 \pm 0.03 \pm 0.22$	$5.23 \pm 0.04 \pm 0.37$	$5.37 \pm 0.02 \pm 0.21$		
$\chi^2/n.d.f.$ (probability)	424/470 (0.94)	$496/466 \ (0.16)$	2.1/4 (0.72)		

- Good χ^2 .
- Electron and muon results are consistent.
- Combined results agree with world average.

$$D \nu \rightarrow \mathcal{G}(1) |V_{cb}| = (43.8 \pm 0.8 \pm 2.3) \times 10^{-3}$$

$$D^* \nu \rightarrow \mathcal{F}(1) |V_{cb}| = (35.7 \pm 0.2 \pm 1.2) \times 10^{-3}$$

Comparison with others

 V_{cb}

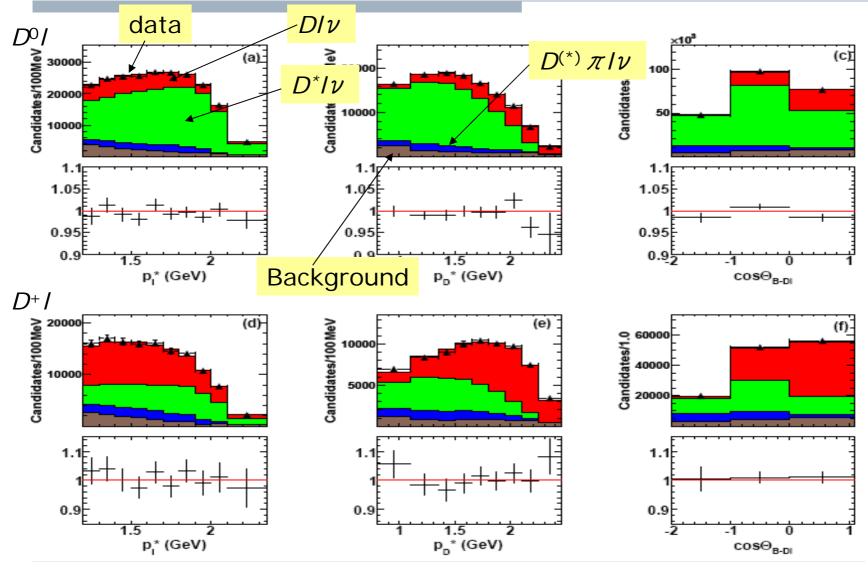
$D\ell\nu: |V_{cb}| = (40.5 \pm 0.8 \pm 2.1 \pm 0.9) \times 10^{-3}.$ $D^*\ell\nu: |V_{cb}| = (38.5 \pm 0.2 \pm 1.3 \pm 1.0) \times 10^{-3}.$

- These two results agree.
- We used (Okamoto *et.al.*, hep-lat/0409116) $G(1) = 1.074 \pm 0.018 \pm 0.016$ and (Bernard *et.al.*, arXiv:0808.2519[hep-lat]) $F(1) = 0.0921 \pm 0.013 \pm 0.020$

Inclusive average (HFAG, Kinetic Scheme) $|V_{cb}| = (41.91 \pm 0.19 \pm 0.28 \pm 0.59) \times 10^{-3}$

Averaging with other Babar results.

- We average over Babar measurements :
 - [6] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 100, 151802 (2008).
 - [9] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. D 77, 032002 (2008).
 - [10] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 100, 231803 (2008).
- to get


$$\begin{aligned} \mathcal{B}(B^- \to D^{*0} \ell \overline{\nu}) &= (5.47 \pm 0.19)\% \quad (\chi^2 \text{ probab.} = 0.38) \\ \rho_{D^*}^2 &= 1.19 \pm 0.04 \quad (\chi^2 \text{ probab.} = 0.90) \\ \mathcal{F}(1)|V_{cb}| &= (34.8 \pm 0.8) \times 10^{-3} (\chi^2 \text{ probab.} = 0.33) \\ \mathcal{B}(B^- \to D^0 \ell \overline{\nu}) &= (2.33 \pm 0.09)\% \quad (\chi^2 \text{ probab.} = 0.85) \end{aligned}$$

Good agreement between Babar measurements.

Summary

- We used global fit to determine Form factor slopes : $\begin{array}{l} \rho_D^2 = 1.22 \pm 0.04 \pm 0.07 \\ \rho_{D^*}^2 = 1.21 \pm 0.02 \pm 0.07, \\ \end{array}$ Branching fractions : $\mathcal{B}(B^- \to D^0 \ell \overline{\nu}) = (2.36 \pm 0.03 \pm 0.12)\% \\ \mathcal{B}(B^- \to D^{*0} \ell \overline{\nu}) = (5.37 \pm 0.02 \pm 0.21)\% \end{array}$
- This method is quite different from and complementary to previous measurements.
- Results agrees with world average.
- We calculated $G(1)|V_{cb}|$ and $F(1)|V_{cb}|$
 - $G(1)|V_{cb}|$ is twice as accurate as world average.
 - $F(1)|V_{cb}|$ is as precise as best single measurement.
- $|V_{cb}|$ is also extracted.
- Submitted to Physical Review D.

Projection plots (Muon)

PhD Oral Examonation K. Hamano