
HISTFITTER
CONFIGURATION FILE
K. Hamano

Configuration example

• Channel: SR, CR1, CR2, VR1, VR2, etc.
• Sample: Signal, ZZ, WG, Z+jets, etc.
• Systematic: Electron ID, Jet energy scale, etc.

CONTENTS 4.1 The fit configuration

configMgr

fitConfig 1

Channel 1 Channel 2

Systematic A Systematic B

Sample I Sample II

Systematic A Systematic C

Sample II Sample III

Systematic D Systematic C

Correlated
systematics

Correlated
sample

Correlated
systematics

Figure 4: Illustration of a fit configuration in HistFitter. Each fitConfig instance defines a PDF built from
a list of channel (i.e. CR, SR or VR), sample and systematic objects. Each channel owns a list of samples
and each sample owns a list of systematic uncertainties. Correlated samples and systematics are declared
by being given identical names. Otherwise they are treated as un-correlated.

addSystematic()

configManager

fitConfig

Sample

Channel

Systematic

addSample()

addChannel()

Figure 5: The methods addChannel(), addSample() and addSystematic() are used to build complex PDFs
in an intuitive way. The methods addSample and addSystematic implement a “trickle down” mechanism,
discussed in the text.

14

Key words in the configuration file
• HistFitter use fitConfig class to construct PDF.

• Adding channels:

•  To specify the channel is CR, VR or SR:

• Adding samples:

•  Input to the samples can be, TTree, Float or Histogram.

CONTENTS 4 Programming of Probability Density Functions

pseudo experiments that are expected to maximize the p-value over the auxiliary measurements,
and the observed p-value is evaluated as usual. This procedure is called “the profile construction”.

This procedure guarantees exact statistical coverage for a counting experiment in the case where
the fitted values of ✓0 correspond to their true values. Towards the asymptotic regime, however, the
distribution of f(q

µsig |µsig

,✓) becomes independent of the values of the auxiliary measurements
used to generate the pseudo experiments. As a result, when using this procedure, the p-value
obtained from the hypothesis test is robust, and generally will not undercover.

Both the observed and expected p-values depend equally on the unknown true values of the auxil-
iary measurements. For consistency reasons, the convention adopted at the LHC is to use the same
values to obtain the expected p-value as the observed p-value on the data. I.e. the same fitted
background levels are used to generate pseudo experiments for both cases, such that the predicted
expectation is the most compatible assessment for the actual observation. Through this choice
the expected p-value now depends indirectly on the observed data in the SR(s). A consequence is
discussed in Sec. 7.3.

4 Programming of Probability Density Functions

HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity.

In the terminology of HistFactory, the likelihood function in Eq. 2 has multiple channels, which
need inputs in the form of samples, corresponding to the signal and background processes for that
region. In turn, the various samples have systematic uncertainties, or systematics. A HistFactory
“channel” is a synonym for a “region”, generically referring to either CR, SR or VR in this section.
The systematic uncertainties can be either statistical, theoretical or experimental in nature. These
HistFactory C++ classes are mirrored (over-loaded) by HistFitter in Python, and extends them
by adding the flexibility to construct multiple PDFs from these building blocks in a programmable
way, as discussed further in this section.

An example HistFitter configuration file, written in Python and demonstrating these components,
is shown in Appendix A.

4.1 The fit configuration

HistFitter uses the fitConfig class to construct its PDFs. The design of this class allows for the
creation of highly complex PDFs, describing highly non-trivial analysis setups, with only a few
lines of intuitive code.

This is configured by users as follows:

from configManager import configMgr
myFitConfig = configMgr.addFitConfig("myAnalysisName")

where myFitConfig is a reference to a new fitConfig object owned by the configManager. The
fitConfig class logically corresponds to a PDF decorated with meta-data about the properties of

13

CONTENTS 4.2 Channels

the contained channels (CR, SR, VR), including visualization, fitting and interpretation options.

During configuration, instances of channels, samples and systematics are put together by fitConfig
objects, together with links to the corresponding input histograms. During execution, the fitConfig
information is used to steer the HistFactory package’s creation of a RooSimultaneous object
modelling the actual PDF with RooFit.

Fig. 4 illustrates the modular design of a typical HistFitter fit configuration. The user inter-
face provides the methods addChannel(), addSample() and addSystematic() to build up data
models in an intuitive manner. For instance, samples and systematics can be e�ciently added
to multiple channels through a “trickle-down” mechanism, as illustrated by Fig. 5. This means
that fitConfig.addSample() adds a sample to all the channels owned by the fitConfig, while
channel.addSample() adds a sample to one specific channel. Similarly, sample.addSystematic()
only adds a systematic to one specific sample while channel.addSystematic() adds a systematic
to all the samples owned by the channel and fitConfig.addSystematic() adds a systematic to
all the samples of all the channels owned by the fitConfig.

Since di↵erent channels often share the same samples (meaning: physics processes), and di↵erent
samples often share the correlated systematic uncertainties, the trickle-down mechanism is in fact
an extremely useful feature. It makes it so that complex configurations of PDFs can often be
described with only a few lines of code. As illustrated in Fig. 5, one simply adds all channels,
samples, and systematic uncertainties directly to the fitConfig object and lets these “trickle
down”, thereby automatically creating a highly advanced fit configuration.

A basic fit configuration can also be conveniently cloned and extended to specify new configurations,
a feature which is frequently used to build data models corresponding to multiple signal hypotheses
from a common background description.

4.2 Channels

The Channel objects contain data from a region of phase space defined by event selection criteria
on the input dataset. Channels can represent either a simple event count (i.e. one bin), or the
multi-binned distribution of a physical observable. New binned and un-binned channels can be
added to a fitConfig by calling:

myChannel = myFitConfig.addChannel("myObs", ["mySelection"], nBins, varLow, varHigh)
myUnbinnedChannel = myFitConfig.addChannel("cuts", ["mySelection"], 1, 0.5, 1.5)

where myObs is the name of an element of the input dataset, nBins, varLow and varHigh indicate
the number of bins and the range of values as for a one-dimensional histogram, and mySelection

specifies the selection criteria of the considered region. For un-binned channels, cuts is a reserved
keyword indicating that only the total the number of events passing the selection criteria needs to
be considered.5

As discussed in Sec. 5.1, a Channel object can represent a CR, SR or VR. This information is
configured by users as follows:

5This is sometimes referred to as a “cut-and-count” experiment in the literature.

15

CONTENTS 4.3 Samples

myFitConfig.setBkgConstrainChannels(myChannel)
myFitConfig.setValidationChannels(myChannel)
myFitConfig.setSignalChannels(myChannel)

It is possible to add an arbitrary number of channels to a given fitConfig by simply calling
addChannel() multiple times. Consequently, HistFitter automatically performs simultaneous fits
constrained by the data of all BkgConstrainChannels (CR) and SignalChannels (SR), but not
by the ValidationChannels (VR). The data itself is described by a list of Sample objects owned
by each channel, as discussed in the next sub-section.

4.3 Samples

The Sample class logically corresponds to a component of a RooFit PDF decorated with HistFitter
meta-data. In a typical particle physics analysis, each sample corresponds to a specific physics
process and several samples are needed to model a complete dataset.

In HistFitter, samples can be defined in a specific channel or defined simultaneously in multiple
channels. The Sample class also owns a list of objects representing its systematic uncertainties.
Importantly, samples provide the link between PDF components and raw input data. Three types
of inputs are supported:

1. TTree: a ROOT data structure, stored in a TFile, in which a list of events is mapped to a
list of key-value pairs characterizing the properties of each event;

2. Float: floating-point numbers provided by users through the Python interface of HistFitter;

3. Histogram: pre-made histograms using the ROOT TH1 data structure, stored in an external
TFile.

The most commonly used type of input is TTree, which provides maximal flexibility and features
but requires the largest amount of processing power and disk I/O. Float inputs tend to be used
for quick tests and simple processes. Histogram inputs can be used for compatibility with external
frameworks, and also allow the user to conveniently skip the TTree-to-histogram processing when
re-building PDFs. In all cases, the raw input is transformed into histograms as specified by Sample
objects, before being saved to a temporary file and passed to HistFactory to build the RooFit PDFs
(see Sec. 4.1).

A basic sample can be created and configured by users as follows:

mySample = Sample("SampleName",myColor)
myChannel.addSample(mySample)

which constructs a sample object owned by myChannel and displayed with myColor color by
the visualization tools. In this example, HistFitter takes inputs from a TTree object named
SampleName in the default ROOT file specified at the configManager level. To construct the
sample, HistFitter uses the event selection criteria of the parent channel and applies a default
sample weight.

16

CONTENTS 4.3 Samples

myFitConfig.setBkgConstrainChannels(myChannel)
myFitConfig.setValidationChannels(myChannel)
myFitConfig.setSignalChannels(myChannel)

It is possible to add an arbitrary number of channels to a given fitConfig by simply calling
addChannel() multiple times. Consequently, HistFitter automatically performs simultaneous fits
constrained by the data of all BkgConstrainChannels (CR) and SignalChannels (SR), but not
by the ValidationChannels (VR). The data itself is described by a list of Sample objects owned
by each channel, as discussed in the next sub-section.

4.3 Samples

The Sample class logically corresponds to a component of a RooFit PDF decorated with HistFitter
meta-data. In a typical particle physics analysis, each sample corresponds to a specific physics
process and several samples are needed to model a complete dataset.

In HistFitter, samples can be defined in a specific channel or defined simultaneously in multiple
channels. The Sample class also owns a list of objects representing its systematic uncertainties.
Importantly, samples provide the link between PDF components and raw input data. Three types
of inputs are supported:

1. TTree: a ROOT data structure, stored in a TFile, in which a list of events is mapped to a
list of key-value pairs characterizing the properties of each event;

2. Float: floating-point numbers provided by users through the Python interface of HistFitter;

3. Histogram: pre-made histograms using the ROOT TH1 data structure, stored in an external
TFile.

The most commonly used type of input is TTree, which provides maximal flexibility and features
but requires the largest amount of processing power and disk I/O. Float inputs tend to be used
for quick tests and simple processes. Histogram inputs can be used for compatibility with external
frameworks, and also allow the user to conveniently skip the TTree-to-histogram processing when
re-building PDFs. In all cases, the raw input is transformed into histograms as specified by Sample
objects, before being saved to a temporary file and passed to HistFactory to build the RooFit PDFs
(see Sec. 4.1).

A basic sample can be created and configured by users as follows:

mySample = Sample("SampleName",myColor)
myChannel.addSample(mySample)

which constructs a sample object owned by myChannel and displayed with myColor color by
the visualization tools. In this example, HistFitter takes inputs from a TTree object named
SampleName in the default ROOT file specified at the configManager level. To construct the
sample, HistFitter uses the event selection criteria of the parent channel and applies a default
sample weight.

16

Key words in the configuration file
•  In case of TTree or Float, the HistFitter creates histograms from those

•  Float example: 3 bins with events 100, 34 and 220

•  TTree example:
•  SampleName = tree name.

•  Adding Systematics:
•  Define systematics:

•  Add to either sample or channel

•  Sample -> specific to the sample.
•  Channel -> common to all samples in the channel.

CONTENTS 4.4 Systematic uncertainties

The default settings can be over-written by users to achieve specific goals. For instance, a sample
can be built from Float input with:

mySample.buildHisto([100,34,220], "region", "observable")

where the list [100,34,220] specifies the values of three bins in an histogram. The default sample
weight and path to the input data can also be over-written as follows:

mySample.setWeight(("weight1","weight2"))
mySample.setFileList(["File1.root","File2.root"])
mySample.setTreeName("ArbitraryName")
mySample.setHistoName("ArbitraryName")

Weights are passed as a string to also allow the easy use of weights stored in a ROOT TTree. In
addition, the Sample class has optional methods to configure its corresponding RooFit PDF, such
as:

mySample.setStatConfig(False)
mySample.setNormFactor("myNorm", 1.0, 0.0, 10.0)

resulting in the deactivation (activated by default) of built-in Poisson statistical uncertainties, and
in the creation of a fit normalization factor myNorm with initial value 1.0 and allowed range 0.0 to
10.0, respectively.

Last but not least, HistFitter provides many features for modeling the systematic uncertainties
associated to each sample, as discussed in the next sub-section.

4.4 Systematic uncertainties

For each model component, a nominal distribution representing the best available prediction is
typically provided to the physics analysis as a histogram owned by a Sample object. These com-
ponents typically have systematic uncertainties whose impact gets quantified in dedicated studies.
This is often modeled as variations of one standard deviation around the nominal prediction, pro-
vided to the physics analysis as sets of two additional histograms. These systematic uncertainties
are parametrized in the PDF with nuisance parameters, as in Eq. 2.

In HistFitter, systematic uncertainties are implemented with a dedicated Systematic class with
several options. In a typical analysis, several Systematic objects are built and owned by a parent
Sample. Through the trickle down mechanism described in Sec. 4, systematics can be defined for
a specific sample or defined simultaneously for multiple samples and/or multiple channels.

A Systematic object can be conceived as a doublet of samples specifying up and down variations
around the parent Sample. Hence Systematic objects can be constructed from the same types of
inputs as Samples, namely: TTree, Float and histogram.

When using TTree inputs, two methods can be used to compute the up/down variations of a
systematic: weight-based or tree-based. In the weight-based method, histograms are always built

17

CONTENTS 4.4 Systematic uncertainties

Basic systematic methods in HistFactory
overallSys uncertainty of the global normalization, not a↵ecting the shape
histoSys correlated uncertainty of shape and normalization
shapeSys uncertainty of statistical nature applied to a sum of samples, bin by

bin
Additional systematic methods in HistFitter
overallNormSys overallSys constrained to conserve total event count in a list of re-

gion(s)
normHistoSys histoSys constrained to conserve total event count in a list of region(s)
normHistoSysOneSide one-sided normHistoSys uncertainty built from tree-based or weight-

based inputs
normHistoSysOneSideSym symmetrized normHistoSysOneSide
overallHistoSys factorized normalization shape and uncertainty, described with

overallSys and histoSys respectively
overallNormHistoSys overallHistoSys in which the shape uncertainty is modeled with a

normHistoSys and the global normalization uncertainty is modeled
with an overallSys

shapeStat shapeSys applied to an individual sample

Table 1: Sub-set of the systematic methods available in HistFitter. The methods are specified by a string
argument containing a combination of basic HistFactory methods and optional HistFitter keywords: norm,
OneSide and/or Sym. Systematic objects can be built with Tree-based, weight-based, Float or histogram
input methods in all cases.

from the same TTree, using three di↵erent sets of weights: up, nominal and down. In the tree-
based method, histograms are built from three di↵erent TTrees using the same set of weights. If
only one variation is available, users can either build a one-sided uncertainty or symmetrize the
variation as nominal±(up�nominal)

nominal

.

Systematic objects can be created by users as follows:

mySys = Systematic("myTreeSys", "ASample", "ASample_UP", "ASample_DOWN", "tree", "myMethods")
mySys = Systematic("myWeightSys", ["nominalWeights"], ["upWeights"], ["downWeights"], "weight", "myMethods")
mySys = Systematic("myUserSys", ["nominalWeights"], 1.1, 0.8, "user", "myMethods")

where myTreeSys and myWeightSys rely on the tree-based and weight-based methods. myUserSys
relies on the Float input discussed above, and, in this example, has asymmetric up and down input
uncertainty values of 10% and 20%. The last argument myMethods is discussed below. Systematic
objects are then associated to Sample or Channel objects with:

mySample.addSystematic(mySys)
myChannel.addSystematic(mySys)

As illustrated in Fig. 4, correlated systematic uncertainties are declared simply by giving them
identical names in the corresponding Samples. Otherwise they are treated as uncorrelated.

18

CONTENTS 4.4 Systematic uncertainties

Basic systematic methods in HistFactory
overallSys uncertainty of the global normalization, not a↵ecting the shape
histoSys correlated uncertainty of shape and normalization
shapeSys uncertainty of statistical nature applied to a sum of samples, bin by

bin
Additional systematic methods in HistFitter
overallNormSys overallSys constrained to conserve total event count in a list of re-

gion(s)
normHistoSys histoSys constrained to conserve total event count in a list of region(s)
normHistoSysOneSide one-sided normHistoSys uncertainty built from tree-based or weight-

based inputs
normHistoSysOneSideSym symmetrized normHistoSysOneSide
overallHistoSys factorized normalization shape and uncertainty, described with

overallSys and histoSys respectively
overallNormHistoSys overallHistoSys in which the shape uncertainty is modeled with a

normHistoSys and the global normalization uncertainty is modeled
with an overallSys

shapeStat shapeSys applied to an individual sample

Table 1: Sub-set of the systematic methods available in HistFitter. The methods are specified by a string
argument containing a combination of basic HistFactory methods and optional HistFitter keywords: norm,
OneSide and/or Sym. Systematic objects can be built with Tree-based, weight-based, Float or histogram
input methods in all cases.

from the same TTree, using three di↵erent sets of weights: up, nominal and down. In the tree-
based method, histograms are built from three di↵erent TTrees using the same set of weights. If
only one variation is available, users can either build a one-sided uncertainty or symmetrize the
variation as nominal±(up�nominal)

nominal

.

Systematic objects can be created by users as follows:

mySys = Systematic("myTreeSys", "ASample", "ASample_UP", "ASample_DOWN", "tree", "myMethods")
mySys = Systematic("myWeightSys", ["nominalWeights"], ["upWeights"], ["downWeights"], "weight", "myMethods")
mySys = Systematic("myUserSys", ["nominalWeights"], 1.1, 0.8, "user", "myMethods")

where myTreeSys and myWeightSys rely on the tree-based and weight-based methods. myUserSys
relies on the Float input discussed above, and, in this example, has asymmetric up and down input
uncertainty values of 10% and 20%. The last argument myMethods is discussed below. Systematic
objects are then associated to Sample or Channel objects with:

mySample.addSystematic(mySys)
myChannel.addSystematic(mySys)

As illustrated in Fig. 4, correlated systematic uncertainties are declared simply by giving them
identical names in the corresponding Samples. Otherwise they are treated as uncorrelated.

18

