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1 PDF, Likelihood and test statistics

1.1 Example PDF: Gaussian signal + exponential background

Gaussian signal PDF (on ns)

fs(x|θs = µx, σx) =
1

σx
√

2π
e
− (x−µx)2

2σ2x (1)

where

• µx = 2.5 (fixed)

• σx = 0.2 (fixed)

Exponential background PDF (on nb)

fb(x|θb = λ) =
1

λ
e−

x
λ (2)

where

• λ = 1[0..5] floating

Observed events
〈n〉 = 〈ns〉+ 〈nb〉 = µs+ µbb (3)

where

• µ = signal strenth = 1 [-10..10] floating.

• s = signal yield = 100 (fixed)

• µb = background strength = 1 [-10..10] floating.

• b = background yield = 1000 (fixed)

Total (signal + background) PDF on n

f(x|µ, θ) = f(x|µ, µb, θs + θb) = f(µ, µb, µx, σx, λ) (4)

=
µsfs(x|µx, σx) + µbbfb(x|λ)

µs+ µbb
(5)
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1.2 Likelihood

Liklihood

L(x|µ, θ) = L(x|µ, µb, µx, σx, λ) = Pois(n, 〈n〉)
n∏
j=1

f(xj|µ, µb, µx, σx, λ) (6)

Likelihood with Gaussian constraint on λ

L(x|µ, θ) = Pois(n, 〈n〉)
n∏
j=1

f(xj|µ, µb, µx, σx, λ) · 1

σλ
√

2π
e
− (λ−µλ)2

2σ2
λ (7)

where

• µ = signal strength: free parameter

• µb: free

• µx = 2.5: fixed

• σx = 0.2: fixed

• λ: Gaussian constrained

• µλ = 1.0: fixed

• σλ = 0.01: fixed

1.3 Test statictics

Test statistics = profile Likelihood ratio

λ(µ) =
L(µ,

̂̂
θ)

L(µ̂, θ̂)
(µ̂ ≥ µ) (8)

λ(µ) =
L(µ,

̂̂
θ)

L(0, θ̂)
(µ̂ < µ) (9)

Or,

q = −2 lnλ(µ) =


2[lnL(0, θ̂)− lnL(µ,

̂̂
θ)] (µ̂ < 0)

2[lnL(µ̂, θ̂)− lnL(µ,
̂̂
θ)] (0 ≤ µ̂ ≤ µ)

0 (µ̂ > µ)

(10)

2 P-value for null hypothesis

Generate data using f(x|µ = 0, µb, λ) with n = 1000 (µ = 0, s = 100, µb = 1, b = 1000). This
is your observed data.
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2.1 Calculation of test statistics

Fit the data by f(x|µ, µb, λ) to get

• µ = µ̂

• µb = µ̂b

• λ = λ̂

and plug in these to get

• f = f(x|µ̂, µ̂b, λ̂)

Fit the data with f(x|µ = 0, µb, λ) to get

• µb = ̂̂µb
• λ =

̂̂
λ

and plug in these to get

• f = f(x|µ = 0, ̂̂µb, ̂̂λ)

We can calculate the test statistics

q0 = −2 lnλ(0) = 2
[
lnL(µ̂, µ̂b, λ̂)− lnL(0, ̂̂µb, ̂̂λ)

]
(11)

This q0 is the observed one: qobs0 .

2.2 Obtain q0 distribution

To get q0 distribution, use toy MC. ntoy = 10, 000.
Generate toy data using f(x|µ = 0, µb, λ) (µb = 1, b = 1000) by varying n with Poisson
random number, which has a mean n = 1, 000.
Then, calculate q0 for each toy.
Repeat this ntoy times to get f(q0|µ = 0).

Quantity RooFit RooStats

µ̂ 0.135 ± 0.095 0.135 ± 0.095

µ̂b 0.986 ± 0.033 0.986 ± 0.033

�̂ 0.965 ± 0.037 0.965 ± 0.037
ˆ̂µb (µ = 0) 1.000 ± 0.032 1.000 ± 0.032
ˆ̂� (µ = 0) 0.990 ± 0.034 0.990 ± 0.034

qexp
0 2.228 2.228

p0 0.067 0.067 ± 0.002

pth
0 0.068 0.068

Z 1.5� 1.5�

µupper 0.308 0.322

µupper
th 0.309 0.309

Table 3: RooFit and RooStats result comparisons.

Figure 3: q0 distribution as obtained from RooFit.

experimental datasets were identical, but the toys
were not of course. It is also interesting to note that
µ̂ for the dataset was 0.135; there was a statistical
fluctuation in the data so that a small excess was
seen. This is often what happens in an experiment,
but this analysis showed that it was nothing to get
excited about (Z = 1.5�).

Figure 3 shows f(q0|0) using RooFit (a nearly
identical plot can be easily extracted from
HypoTestPlot in RooStats with one command).
The red line on the plot shows the asymptotic pre-
diction for f(q0|0), as given by Equation 14. The
plot shown was generated for 10,000 toys. Sim-
ilarly, Figure 4 shows the distribution of pµ for

Figure 4: pµ distribution as obtained from RooFit

(the green line provides a visual aid and is not ex-
actly accurate).

0 < µ  0.4. Once again the red line is the asymp-
totic prediction given by Equation 18. The green
line shows where pµ = 0.05, and the corresponding
µupper. This plot was not obtainable in RooStats;
it simply calculates the upper limit, and does not
allow the user to extract/plot any information from
the toys used to find pµ. This made it di�cult to
verify that the toys were being generated in the cor-
rect manner.

Monitoring toys was entirely possible using
RooFit. Estimator values can be extracted easily
by calling – for the case of µ̂ – mu.getVal() and
mu.getError() after minimizing the negative log-
likelihood. Then the estimator distributions may be
plotted and monitored to ensure that they have the
correct mean, that they follow a Gaussian distri-
bution, etc. Unexpected behaviours in these plots
led to the discovery of a bug in the program, or an
error in the modelling. This was how it was deter-
mined that the µb nuisance parameter was needed
in the model, because biases were seen in these plots
without it. The correct distributions obtained from
RooFit are shown in Figure 5.

The final step is to apply a nuisance parameter
constraint to the likelihood, seeing as this is a very
important procedure in ATLAS analyses. This is
discussed in the next section.
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2.3 Get p-value

For observed qobs0 , the p-value for the null hypothesis is given by

p0 =
∫ ∞
qobs0

f(q0|0)dq0 (12)

3 Limit of Signal Strength (µ)

Generate data using f(x, µ, µb, λ) with fixed µ (µ = 0 in this example) with n = 1005
(µ = 0.05, s = 100, µb = 1, b = 1000). This is your observed data.

3.1 Calculate pµ for given µ

3.1.1 Calculation of qµ

Then, we scan over µ to get upper limit.
We start from µ = 0.05.
Fit the data by f(x|µ, µb, λ) to get

• µ = µ̂

• µb = µ̂b

• λ = λ̂

Fit the data with fixed µ with f(x|µ = 0.05, µb, λ) to get

• µb = ̂̂µb
• λ =

̂̂
λ

This gives

qµ = −2 lnλ(µ) = 2
[
lnL(µ̂, µ̂b, λ̂)− lnL(µ, ̂̂µb, ̂̂λ)

]
(13)

This is your observed qobsµ with µ = 0.05.

3.1.2 Get qµ distribution using toy experiments

Generate toys for the fixed µ = 0.05 by varying n.
Fit to the toy to get qµ for the toy.
Repeat this ntoy times to get f(q|µ) distribution for the fixed µ = 0.05.

3.1.3 Get p-value

Then, calculate p-value:

pµ =
∫ ∞
qobsµ

f(q|µ)dq (14)
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3.2 Scan over µ to get pµ distribution

Repeat this for example, nµ = 40 times, starting from µ = 0.05 with ∆µ = 0.01, which
means

µ = 0.05, 0.015, 0.025, ..., 0.045

to get pµ distribution w.r.t. µ.
The 95% confidence level (CL) upper limit of the µ is given by the µ value at pµ = 0.05.

Quantity RooFit RooStats

µ̂ 0.135 ± 0.095 0.135 ± 0.095

µ̂b 0.986 ± 0.033 0.986 ± 0.033
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ˆ̂� (µ = 0) 0.990 ± 0.034 0.990 ± 0.034

qexp
0 2.228 2.228

p0 0.067 0.067 ± 0.002

pth
0 0.068 0.068
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µupper
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constraint to the likelihood, seeing as this is a very
important procedure in ATLAS analyses. This is
discussed in the next section.
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4 Expected limit and bands

Generate data’ = background only toy MC based on f(x|µ = 0,
̂̂
θ(0, obs)).

Calculate upper limit for the data’: µup(data’).

Repeat this nexp =? times to get the distribution of the upper limits: f(µup|µ = 0,
̂̂
θ(0, obs))

Expected limit = medium of the f(µup|µ = 0,
̂̂
θ(0, obs)) distribution.

±1σ and ±2σ bands = 68% and 95% bans of the f(µup|µ = 0,
̂̂
θ(0, obs)) distribution.

5 Significance

With a give p-value, p, its significance, Z, is given by

Z = Φ−1(1− p) (15)

or
1− p = Φ(Z) (16)

where
Φ(x) =

∫ x

−∞
φ(x)dx (17)
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and φ(x) is the PDF.

This collection of formulas are used to double-check
the distributions obtained from toys. One last im-
portant formula to note is the theoretical value for
the upper limit on µ at confidence level 1 � ↵:

µupper = µ̂ + ���1(1 � ↵) (19)

The paper by Cowan et al. [1] has more details on
these asymptotic equations.

2.4 Statistical significance

When the Higgs boson discovery was first an-
nounced in July 2012, a “5� significance” was also
quoted. This quantity has a corresponding p-value,
but converting the p-value into units of a Gaussian
standard deviation is more convenient.

Figure 1: Visualization of the definition of the p-
value and Z.

The relationship between the p-value and the sig-
nificance Z is shown in Figure 1. The function �(x)
is the standard normal distribution, given by

�(x) =
1p
2⇡

e�x2/2. (20)

It should be noted that the p-value shown in Figure
1 is for a one-sided test statistic. In this case the
relationship between Z and the p-value is defined
such that “a Gaussian distributed variable found Z
standard deviations above its mean has an upper-
tail probability equal to p” [1]. Z is therefore

Z = ��1(1 � p), (21)

where ��1 is the quantile (inverse of the cumulative
distribution �(x)) of the standard Gaussian.

Table 1 summarizes the corresponding p-values
for a given Z, as well as the “chance” to obtain the
data. This table makes it clear why quoting a value

Z (�) p-value Chance

1 1.587 ⇥ 10�1 1/6

2 2.275 ⇥ 10�2 1/44

3 1.349 ⇥ 10�3 1/741

4 3.167 ⇥ 10�5 1/31,574

5 2.867 ⇥ 10�7 1/3,488,556

Table 1: Relation between Z, the p-value (one-
sided), and the chance to obtain as (or more) in-
compatible data for a given hypothesis.

for Z is more convenient than quoting a p-value. In
ATLAS, a 3� significance corresponds to “evidence”
for a theory, and a 5� significance corresponds to a
discovery. For the Higgs discovery, the significance
quoted was calculated from p0.

3 Analysis

3.1 Toy model

In order to study some test statistics, a “proposed”
model must be defined. For this study we used a
Gaussian signal where all parameters were assumed
to be known (hence no nuisance parameters). The
signal probability density function was defined to
be

fs(x|✓s) = fs(x) =
1

�x

p
2⇡

e
�(x�µx)2

2�2
x , (22)

where µx and �x are the mean and standard devia-
tion of the Gaussian signal respectively. Note that
this function is assumed known with no free param-
eters. Similarly, we defined the background as being
an exponentially decaying probability density given
by

fb(x|✓b) = fb(x|�) =
1

�
e�

x
� , (23)

where � is the background shape nuisance parame-
ter.3 The addition of these two probability densities
gives the total model PDF, f(x|µ,✓), as defined in
the likelihood in Equation 3. The other two pa-
rameters, µ and µb, appear in this PDF in order to

3This is not to be confused with the profile likelihood ratio
�(µ).
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Z(σ) p-value Chance
1 1.587× 10−1 1/6 (16.7%)
2 2.275× 10−2 1/44 (2.5%)
3 1.349× 10−3 1/741 (0.1%)
4 3.167× 10−5 1/31574 (0.003%)
5 2.867× 10−7 1/3488556 (0.00003%)

6 Asymptotic Formula

The function f(q|µ) and the relation between pµ and µ were obtained from toy MC above.
But they can be derived analytically using an approximation.
Those are called ”Asymptotic Formula” and given as red lines in the above two plots.
Test statistics is

qµ =
µ2

σ2
− 2µµ̂

σ2
(µ̂ < 0) (18)

qµ =
(µ− µ̂)2

σ2
(0 ≤ µ̂ ≤ µ) (19)

qµ = 0 (µ̂ > µ) (20)

PDF is

f(q|µ) =
1

2
δ(q) +

1

2

1√
2π

1√
q
e−q/2

(
0 < q <

µ2

σ2

)
(21)

f(q|µ) =
1

2
δ(q) +

1√
2π(2µ/σ)

e
− 1

2
(q+µ2/σ2)2

(2µ/σ)2

(
q >

µ2

σ2

)
(22)

The standard deviation, σ, of µ̂, under assumption of a signal strength µ can be found by
generated toy dataset

σ ∼ µ√
q

(23)

The cumultive distribution is

F (q|µ) = Φ (
√
q)

(
0 < q <

µ2

σ2

)
(24)
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F (q|µ) = Φ

(
q + µ2/σ2

2µ/σ

) (
q >

µ2

σ2

)
(25)

p-value is
pµ = 1− F (q|µ) (26)

Significance is

Zµ =
√
q

(
0 < q <

µ2

σ2

)
(27)

Zµ =
q + µ2/σ2

2µ/σ

(
q >

µ2

σ2

)
(28)

Upper limit at confidence level 1− α

µupper = µ̂+ σΦ−1(1− α) (29)
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