Tracking Efficiency Study of Babar Detector

OUTLINE

- Motivation
- Accelerator
- DCH and SVT
- SVT-based efficiency
- Efficiency results
- Data/MC ratio results
- Conclusion

Motivation

 In physics analysis, Use MC simulation to model the rates of data
 But,

Efficiency for Data \neq Efficiency for MC

Need to get correction factors

Correction factor = $\frac{\text{Data efficiency}}{\text{MC efficiency}}$

Accelerator

 Asymmetric electron positron collider
 Electron 9GeV Positron 3.1GeV
 Tuned to produce Y(4S) resonance, decaying into 2 B-mesons.

DCH and SVT

- Babar detector has two tracking devices.
- SVT (Silicon Vertex Tracker)
- DCH (Drift Chamber)
- 1.5T axial magnetic field

DCH (Drift Chamber)

Main tracking device

cross section view along the beam line

DCH (Drift Chamber)

- 40-layer small-cell chamber
- Momentum resolution

$$\frac{\sigma_{P_T}}{P_T} = (0.13 \pm 0.01)\% \bullet p_T + (0.45 \pm 0.03)\%$$

0.97% for $p_{\rm T}$ =2GeV

*p*_T>100MeV

SVT (Silicon Vertex Tracker)

5 double layers (r - \u03c6, r - z)
 2 hits per layer
 Can reconstruct charged tracks.
 (Typical SVT has only 2 or 3 single layers and cannot reconstruct tracks)

SVT-based Tracking Efficiency

Use SVT to determine the efficiency of DCH

 $\varepsilon = \frac{\text{Number of (SVT + DCH) tracks}}{\text{Number of SVT tracks}}$

- Compare efficiencies of Data and MC to produce correction table.
- This table will be widely used in Babar community.

SVT fake tracks

Fake tracks

tracks from a combination of noise hits.

■ Rate of fake tracks is determined by well known Bhabha events (e+ e- → e+ e-)

Fakes per event = $\frac{\text{Number of fake tracks}}{\text{Number of Bhabha events}}$ Number of fake tracks for multi-hadron events Fake tracks = (Fakes per event)× (Number of multi hadron events)

Measured Efficiency

Measured efficiency is given by

 $\varepsilon = \frac{\text{DCH} + \text{SVT tracks with 10 SVT hits}}{\text{SVT tracks with 10 SVT hits} - \text{Fake tracks}}$

- 10 SVT hits means the particle went through the SVT because SVT has 5 layers and a charged particle leave 2 hits per each layer.
 - This doe not give an absolute efficiency.
- We are interested in Data/MC ratios.

Data and MC(Monte Carlo)

- 100 pb^{-1} of data was used.
- This is less than one day data.
- Uncertainty is dominated by systematic error (~1%)
- Statistical error is the order of 0.1%
- 400 pb^{-1} of MC was used.

Kinematic variable dependence

Efficiency would depend on

- \succ Transverse momentum: $p_{\rm T}$
- > Angles: θ, ϕ
- Multiplicity = number of tracks per event

Efficiency vs $p_{\rm T}$

Efficiency vs Theta

Efficiency vs Phi

Efficiency vs Multiplicity

Data/MC Ratio Plots

- Data/MC ratios
- *p*_T > 0.18GeV
 - 0.41< *θ* <2.41
- Good agreement
- Flat
- Statistical error is the size of the dots(~0.1%)
- Systematic error ~1%

Averaged Efficiencies and Ratio

Efficiencies and Data/MC ratios averaged over bins

Efficiency of Data	96.37%
Efficiency of MC	96.95%
Data/MC ratio	99.40%

Conclusion

- Using SVT-based efficiency, Data/MC ratios were measured.
- Data/MC ratios were close to 1 and relatively flat against transverse momentum, theta, phi and multiplicity.
- Collection tables of Data/MC ratios were produced.
- Correction tables are going to be widely used in the Babar community.

Multiplicity dependence

- Could be the selection bias
- Cuts 1
 *p*_T > 0.18GeV
 0.41
 0.41
- Cuts 2 $p_{\rm T} > 0.31 {\rm GeV}$ $0.41 < \theta < 2.41$
 - Specific bin 0.45< *P*_T <0.65 0.83< *θ* <1.15

