Global Fit for Branching Fractions and Form Factor Slope of $B - > D^{(*)} / \nu$ Decays

Fitting metod and FF re-weighting

Changes since last September

- Use OffPeak data instead of ccbar, uds and tautau MC
- Use Run2 (59.4 fb⁻¹ of data) to get more OffPeak statistics.
- Fixed relative size of background components to get more realistic results.
- D** FF re-weighting

Bin by bin plot : D0 momentum

Bin by bin plot : D+ momentum

11/27/2006

Semileptonic AWG Meeting,

Fitting Method

Binned chi-square fitting

$$\chi^{2} = \sum_{i=bin}^{D^{0}} \frac{\left(N_{i}^{\text{OnPeak data}} - N_{i}^{\text{OffPeak data}} - \sum C N_{i}^{B\overline{B}MC}\right)^{2}}{\left(\sigma_{i}^{\text{OnPeak data}}\right)^{2} + \left(\sigma_{i}^{\text{OffPeak data}}\right)^{2} + \sum \left(C \sigma_{i}^{B\overline{B}MC}\right)^{2}} + \sum_{i=bin}^{D^{+}} \frac{\left(N_{i}^{\text{OnPeak data}} - N_{i}^{\text{OffPeak data}} - \sum C N_{i}^{B\overline{B}MC}\right)^{2}}{\left(\sigma_{i}^{\text{OnPeak data}}\right)^{2} + \left(\sigma_{i}^{\text{OffPeak data}}\right)^{2} + \sum \left(C \sigma_{i}^{B\overline{B}MC}\right)^{2}}$$

- $N_i^{B\overline{B}MC}$: expected number of candidates from $B\overline{B}$ MC.
- *C* : consists of branching fractions.
- 8 signal modes and 4 background modes (combinatorial background is almost zero after sideband subtraction)
- Isospin symmetry for B decays.

$N_i^{B\overline{B}MC}$ and C: Signal

- $B \rightarrow D / \nu$: $C = BF(B \rightarrow D / \nu)$
- $B \to D^* / \nu : C = BF(B \to D^* / \nu)$
- $B \to D^{**}/\nu \& B \to D^{(*)}\pi/\nu : BF(B \to Other /\nu)$
 - $B \rightarrow D_0^* / \nu$: $C = f_1 \times B(B \rightarrow Other / \nu)$
 - $B \rightarrow D_1 / \nu$: $C = f_2 \times B(B \rightarrow Other / \nu)$
 - $B \rightarrow D_1' / \nu$: $C = f_3 \times B(B \rightarrow Other / \nu)$
 - $B \rightarrow D_2^* / \nu$: $C = f_4 \times B(B \rightarrow Other / \nu)$
 - $B \rightarrow D\pi / \nu$: $C = f_5 \times B(B \rightarrow Other / \nu)$
 - $B \rightarrow D^* \pi / \nu$: $C = f_6 \times B(B \rightarrow Other / \nu)$
- 4 parameters to be determined :
 - 3 BFs and $B \rightarrow D/\nu$ FF slope.
- Factors f₁ f₆ are fixed.

$N_i^{B\overline{B}MC}$ and C: Background

- Uncorrelated (= D and I from different B) : C = fa * f₀
- Uncorrelated (= D and / from different B) and / not directly from B (i.e. B->D->X/) : C = fb * f₀
- Cascade (= / not directly from B) and correlated
 (i.e. B -> D Dbar, Dbar->XI) : C = fc * f₀
- Fake lepton = misidentified $I : C = fd * f_0$
- Combinatorial background is almost zero after *D* mass sideband subtraction.
- $f_0(D^0)$ and $f_0(D^+)$ are floated in the fit independently.
- fa = fb = fc = fd = 1.

$$f_{+0}$$
 and c_{+0}

• We also included f_{+0} in the fit with Gaussian constraint

$$f_{+0} = \frac{\mathrm{BR}(e^+e^- \to B^+B^-)}{\mathrm{BR}(e^+e^- \to B^0\overline{B^0})}$$

• To account for possible simulation difference of D^0 and D^+ , we multiplied C of D^+ MC by c_{+0} (floated with Gaussian constraint). This also allows the fit to adjust for the uncertainties in the relative BFs for $D^0 - K\pi$ and $D^+ - K\pi\pi$, and should make us less sensitive to uncertainties from tracking efficiency.

Form Factor Re-weighting

• $B \rightarrow D/\nu$: ISGW2 -> HQFT

 $h_{+}(w) = h_{+}(1)[1 - \rho_{D}^{2}(w - 1)]$

- $B \rightarrow D^* / \nu$: HQET
 - Babar measurement of R_1 , R_2 and slope ρ^2 .
- B->D**/ν: ISGW2 -> HQET
 - Based on LLSW paper (Leibovich, Ligeti, Stewart and Wise, PRD57(1998)308, hep-ph/9705467)
- Normalization
 - Total decay rate should stay same

$$\Gamma = \int \frac{d\Gamma(\text{old FF})}{dq^2} dq^2 = R_N \int \frac{d\Gamma(\text{new FF})}{dw} dw$$

• R_N is the normalization factor

D₀* FF re-weighting

Differential decay rate (see also p.14)

$$\frac{d\Gamma}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (w^2 - 1)^{3/2} F(w)$$
$$F(w) = [(1+r)g_+ - (1-r)g_-]^2$$

ISGW2 model

$$F(q^{2}) = R^{2}[(1+r)u_{+}(q^{2}) - (1-r)u_{-}(q^{2})]^{2}$$

• LLSW model slope $F(w) = \zeta^{2}(1)[s_{0} + (w-1)s_{1}^{*}]$ $s_{0} = (1-r)^{2} + 3(1-r^{2})(\varepsilon_{b} + \varepsilon_{c})(\overline{\Lambda}^{*} - \overline{\Lambda})$ $s_{1} = 2(1-r)^{2}\hat{\zeta}'$

D₁' FF re-weighting

Differential decay rate (see also p.14)

$$\frac{d\Gamma}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (w^2 - 1)^{1/2} F(w)$$

$$F(w) = [(w - r)g_{V_1} + (w^2 - 1)(g_{V_3} + rg_{V_2})]^2 + 2(1 - 2rw + r^2)[g_{V_1}^2 + (w^2 - 1)g_A^2]$$

ISGW2 model

$$g_A \to Rm_B(1-r)q, \ g_{V_1} \to \frac{2}{Rm_B(1-r)}l, \ g_{V_3} + rg_{V_2} \to Rm_B(1-r)c_+$$

LLSW model

$$\begin{split} F(w) &= \varsigma^2(1) \{ [s_0 + 2(1 - 2rw + r^2)t_0] \\ &+ (w - 1)[s_1 + 2(1 - 2rw + r^2)t_1] + (w - 1)^2[s_2 + 2(1 - 2rw + r^2)t_2] \} \\ s_0 &= (1 - r)^2(\varepsilon_c - 3\varepsilon_b)^2(\overline{\Lambda}^* - \overline{\Lambda})^2, \ t_0 &= (\varepsilon_c - 3\varepsilon_b)^2(\overline{\Lambda}^* - \overline{\Lambda})^2 \\ s_1 &= -2(1 - r^2)(\varepsilon_c - 3\varepsilon_b)(\overline{\Lambda}^* - \overline{\Lambda}), \ t_1 &= 2 + 4(\varepsilon_c - 3\varepsilon_b)(\overline{\Lambda}^* - \overline{\Lambda}) \\ s_2 &= (1 + r^2), t_2 &= 2(1 + 2\hat{\varsigma}') \end{split}$$

D₁ FF re-weighting

Differential decay rate (see also p.14)

$$\frac{d\Gamma}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (w^2 - 1)^{1/2} F(w)$$

$$F(w) = [(w - r)f_{V_1} + (w^2 - 1)(f_{V_3} + rf_{V_2})]^2 + 2(1 - 2rw + r^2)[f_{V_1}^2 + (w^2 - 1)f_A^2]$$

ISGW2 model

$$f_A \to Rm_B(1-r)v, \ f_{V_1} \to \frac{2}{Rm_B(1-r)}r, \ f_{V_3} + rf_{V_2} \to Rm_B(1-r)s_+$$

LLSW model $F(w) = \frac{1}{3}\tau^{2}(1)\{[s_{0} + 2(1 - 2rw + r^{2})t_{0}] + (w - 1)[s_{1} + 2(1 - 2rw + r^{2})t_{1}] + (w - 1)^{2}[s_{2} + 2(1 - 2rw + r^{2})t_{2}]\}$ $s_{0} = 32(1 - r)^{2}\varepsilon_{c}^{2}(\overline{\Lambda} - \overline{\Lambda})^{2}, t_{0} = 32\varepsilon_{c}^{2}(\overline{\Lambda} - \overline{\Lambda})^{2}$ $s_{1} = 32(1 - r^{2})\varepsilon_{c}(\overline{\Lambda} - \overline{\Lambda}), t_{1} = 4 + 32\varepsilon_{c}(\overline{\Lambda} - \overline{\Lambda})$ $s_{2} = 8(1 + r)^{2}, t_{2} = 8(1 + \hat{\tau}')$

11/27/2006

D₂* FF re-weighting

Differential decay rate (see also p.14)

$$\frac{d\Gamma}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{48\pi^3} r^3 (w^2 - 1)^{3/2} F(w)$$

$$F(w) = \frac{2}{3} [(w - r)k_{A_1} + (w^2 - 1)(k_{A_3} + rk_{A_2})]^2 + 2(1 - 2rw + r^2)[k_{A_1}^2 + (w^2 - 1)k_V^2]$$

ISGW2 model

$$k_V \to Rm_B(1-r)h, \ k_{A_1} \to \frac{2}{Rm_B(1-r)}k, \ k_{A_3} + rk_{A_2} \to Rm_B(1-r)b_+$$

LLSW model

$$\begin{split} F(w) &= \frac{1}{3}\tau^2(1)\{[2s_0 + 3(1 - 2rw + r^2)t_0] + (w - 1)[2s_1 + 3(1 - 2rw + r^2)t_1]\}\\ s_0 &= 4(1 - r)^2, \ t_0 = 4\\ s_1 &= 4(1 - r)^2(1 + 2\hat{\tau}'), \ t_1 &= 2(3 + 4\hat{\tau}') \end{split}$$

Numerical Values for LLSW

$$r = \frac{m_D}{m_B}, \ R = \frac{2\sqrt{m_B m_D}}{m_B + m_D}, \ \varepsilon_c = \frac{1}{2m_c}, \ \varepsilon_b = \frac{1}{2m_b}$$
$$\tau(1) = 0.71, \ \varsigma(1) = \frac{2}{\sqrt{3}}\tau(1),$$
$$\hat{\tau}' = -1.5, \ \hat{\varsigma}' = \frac{1}{2} + \hat{\tau}' = -1$$
$$\varepsilon_c (\overline{\Lambda}' - \overline{\Lambda}) = 0.14, \ (\overline{\Lambda}' - \overline{\Lambda} = 0.39 \text{GeV})$$
$$\varepsilon_c + \varepsilon_b = 0.92 \text{GeV}^{-1}, \ \varepsilon_c - 3\varepsilon_b = 0.05 \text{GeV}^{-1}, \ \overline{\Lambda} * - \overline{\Lambda} = 0.35 \text{GeV}$$

D₀* FF plots : w dependence

D₀* FF plots : FF and weights

D_0^* kinematic variables

D₁' FF plots : w dependence

D₁' FF plots : FF and weights

D_1' kinematic variables

D₁ FF plots : w dependence

11/27/2006

D₁ FF plots : FF and weights

D_1 kinematic variables

D₂* FF plots : w dependence

11/27/2006

D₂* FF plots : FF and weights

D_2^* kinematic variables

Fit Result (Run2 only)

<i>B</i> ⁺	ISGW2	LLSW
Slope	1.4959 +- 0.0049	1.4524 +- 0.0054
BR(<i>DIν</i>)	0.0282 +- 0.0011 (4.0%)	0.0295 +- 0.0011
BR(<i>D*Iν</i>)	0.0591 +- 0.0015 (2.5%)	0.0610 +- 0.0015
BR(Other)	0.0221 +- 0.0011 (4.9 %)	0.0189 +- 0.0009

Difference between ISGW2 and LLSW is 3-5% (14% for BR(Other)). Similar size to statistical uncertainty.

Chi-square did not improve much (346 -> 334, ndof=180).

ISGW2 : D^o momentum

LLSW : D⁰ momentum

ISGW2 : D⁺ momentum

LLSW : D⁺ momentum

Summary

- A lot of questions on LLSW model:
 - Plots look as those should do?
 - Best formula?
 - Appropriate numerical values?
 - How much those values can be varied?
- 3-5% effect on fit results
 - Current fit code may have a small bug....
- BAD1586 V2 will be ready soon.
 - Details of FF and re-weighting are in the BAD.