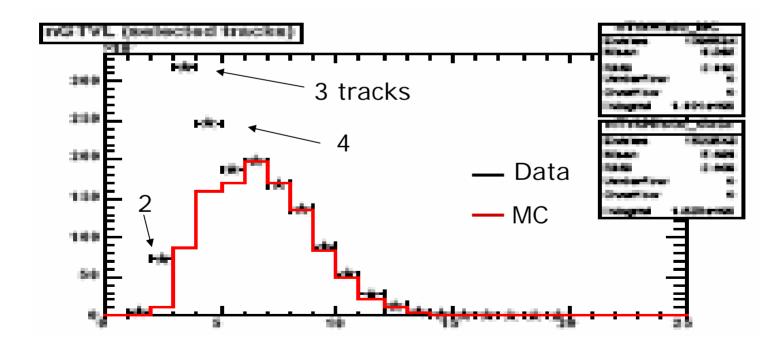
Tracking Pseudo-Efficiency

Correction Tables for R18

Pseudo-Efficiency


Two usage of pseudo-efficiency.

$$e = \frac{nGTL}{nGTVL}$$

- Make Correction Tables.
 - Today's topic
 - Correction factors for physics analysis.
 - Make conditions as close as typical physics analysis.
 - Event selection, fake correction, etc.
- Validation of DCH.

Event Selection – Bhabha veto

- Use standard Bhabha veto
 - Typical physics analysis uses Bhabha veto.
 - Correct the discrepancy between the numbers of selected tracks at low multiplicity.

Fake correction

What was done

$$e = \frac{nGTL}{nGTVL - nSVTFakes}$$

- SVTFakes = tracks which have SVT hits only.
- Go without fake correction : reasons
 - Used Bhabha events to calculate Fake Rates, but
 - Bhabha events and multi-hadron events are different.
 - Especially, at low pT, this does not give us reliable numbers because of low statistics of Bhabha tracks.
 - In physics analysis, they do not do this kind of fake correction. Majority does not do fake corrections at all.
 - DCH is not independent from SVT --> this correction does not have original meaning any more.
 - Fake Rates are small: average 0.1 %

Systematic Uncertainty

- What was done in R12/R14
 - Trk quality requirement (nSvt, Vertex): 0.2 %
 - MC composition (selection bias): 0.33 %
 - Consistency with tau method: 0.18 %
 - Fake correction : 0 %
 - Track Hit Adders: 0.86 %
 - Switch off TrkHitAdders and see the change in Data/MC ratio.
- We can keep the first three, but the last two does not make sense.
 - No need for fake correction uncertainty...

New systematic study

- Use SVT-efficiency?
 - First order : pseudo-eff = DCH eff (e_DCH).
 - Use track history to calculate SVT-eff (e_SVT).

$$e _SVT = \frac{nGTL \text{ with SVT hits}}{nGTL}$$

Total efficiency is

$$e_{total} = e_{total} + e_{t$$

- Compare this to tau results to get systematic uncertainty.
- What else we should consider ?
- Needs input !!!