Global Fit for BF and FF in B->Dlnu decay

Fitting status

29/06/2006

UVic Babar Meeting, K. Hamano

Motivation

- Determine B -> Dlnu and B->D*lnu Branching Fractions (BF)
 - Hoping to solve problems like
 - B0 -> D*- I nu BF disagreement
 - 0.0459 +- 0.0063 (BELLE 2002)
 - 0.0490 +- 0.0042 (Babar 2005)
 - 0.0590 +- 0.0072 (DELPHI 2004)
 - 0.0609 +- 0.0059 (CLEO2 2003)
 - Inclusive and exclusive discrepancy
 - Inclusive B0 -> Xc | nu : 0.105 +- 0.008 (PDG)
 - Exclusive B0 ->D- l nu : 0.0213 +- 0.0018

->D*- I nu : 0.0520 +- 0.0024

-> Others are small <0.01

- Determine B->Dlnu Form Factor (FF) slope
 - Current uncertainty ~ 30 %.

What is FF (Form Factor)?

Quark level process is simple

Can be calculated with good precisions

•We need FF to include QCD effect in the B and D hadrons

- •QCD processes inside B or D hadron is non-perturbative
- We push the non-perturbative effect into FF

Decay rate = (quark level process)*FF

There are effective theories to deal with non-perturbative QCD

- •Quark models such as ISGW2 Model
- HQET (Heavy Quark Effective Theory)
- ChPT (Chiral Perturbation Theory), and more...

B->Dlnu decay FF and re-weighting

- In B->Dlnu decays, there is one FF:
 - $h+(w) = R*f+(q^2)$
 - $W = (MB^2 + MD^2 q^2)/(2MB^*MD)$
 - R=sqrt(MB*MD)/(MB + MD)
- ISGW2 Model and f+(q^2) is used in MC
- HQET
 - $h+(w) = 1 rho^2 (w 1)$
 - rho^2 = FF slope
- Need to re-weight MC to change FF from ISGW2 to HQET
 - No need to generate new MC
 - We can just re-weight event by event (candidate by candidate) when making MC histograms.

Event Selection

- BToDInu skim
 - Select events including B->D/D*Inu candidates.
- Bhabha veto
 - Reject radiative Bhabha events.
- Kaon selection
 - KMicroNotPion selector
- Vertexing (by TreeFitter)
 - D vertexing probab >0.01
 - B vertexing probab >0.01
- Trust cut
 - lcosDinonDll < 0.88</pre>

D mass plot after selection

29/06/2006

After sideband subtraction

29/06/2006

What's in the backgrounds?

- Uncorrelated background from BBbar
 - D and I came from different B
- Cascade lepton background from BBbar
 - Lepton did not come from B but came from D
- Lepton mis identification background from BBbar
 - Lepton was really a kaon, pi or proton
- Ccbar background with realD

Method of analysis

- Reconstruct only D0 I and D+ I candidates. All higher D state feeds down to D.
 - B->Dlnu
 - B->D*Inu, D*->DX
 - B->D**Inu, D** ->DX
 - B->D Pi Inu (non-resonant)
- Use clean modes D0->KPi and D+->KPiPi.
- Bin events in 3-D : D momentum, Lepton momentum and cosThetaB-DI.
- Fit to B->Dlnu events.
 - Use MC histograms like PDF (Probability Density Functions)
 - Fit those PDFs to measured data.

Binning

- Lepton momentum bin (4bins):
 - 0.8, 1.2, 1.6, 2.0, 2.4 GeV
- D momentum bin (6 bins):
 - 0.2, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6 GeV
- cosBY bin (5 bins):
 - -10, -2.5, -1.1, 0.0, 1.1, 5
- Total 120 * 2 (D+ and D0) = 240 bins
 - Use "#evt > 5" bins -> ~190 bins are used
- Run 3 data (30.6 fb-1) and MC (~100 fb-1 of BBbar and ~50 fb-1 of others)

was used.

What is cosBY ?

- Y is DI combination in this case
- cosBY = cosine of the angle between the direction of B

and

the direction of "D-I"

in the Y(4S) rest frame

-1 < cosBY < 1 is expected, but....

This is not the case because of detector effects, miss-reconstructions, additional pion from higher D mass states or non-resonant DPilnu decays, etc.

-> Can separate D**Inu, background etc.

Binned chi-square fitting

- Chi-sq = $(N^{data} sum of C^{N^{data}})^2 / sigma^2$
- Predicted number of events (N^{MC})
 - Tracking efficiency and PID corrected.
 - Luminosity normalised to data.
 - Form factor (FF) re-weighted.
- Coefficients (C) include
 - Branching fractions (BF)
 - Ratios like

 $f_+0 = f_+/f_00$ (production rates ratio),

 $t_0 + = t_0 / t_{+-}$ (life time ratio),

efficiency difference to reconstruct $D+/D0 = c_D+0$

- Isospin symmetry is assumed for B->DlnuX decays (not for D*->D).
- Use TMINUIT to minimize chi-square.

Validation of fitting

- Split Run3 MC into two halves.
- Use first half as a fake data.
- Fit this fake data by the second half of MC
- Results
 - Number of bins = 190, number of parameters = 18, number of dof = 190 - 18 = 172
 Chi-square = 170.0
 - Fitted branching fractions are consistent with the values used in the MC
 - B->Dlnu :0.02113 +- 0.00062 (0.0210 in SP5)
 - B->D*lnu :0.05564 +- 0.00086 (0.0560 in SP5)

First results of fitting to Data

- Branching fractions
 - BF(B > Dlnu) = 0.02542 + 0.00079 (3.1 %)
 - BF(B->D*Inu) = 0.05625 +- 0.00114 (2.0 %)
 - Float all other branching fractions
- Dlnu FF slope
 - rho^2 = 1.473 +- 0.012 (0.8 %)
- Float background components separately fo D0 and D+
- Float f+0 and c_D+0. Gaussian constraints on f+0 and c_D+0
- No significant correlation between variables.

Fitted Plots (0)

D0

D+

D momentum

UVic Babar Meeting, K. Hamano

Fitted plots (1)

29/06/2006

Fitted Plots (2) – D0 momentum

Fitted Plots (3) – D+ momentum

Next steps

- Vary B->D*Inu FF parameters.
- Re-weight D**Inu MC and DPilnu(nonresonant) MC.
- Apply constraints on D**Inu and D(*)Pilnu BFs in the fit.
- Systematic uncertainty.