Global Fit for BF and FF in B->Dlnu decay

Fitting status

Motivation

- Determine B -> Dlnu and B->D*Inu Branching Fractions (BF)
 - Hoping to solve problems like
 - B0 -> D*- I nu BF disagreement between experiments.
 - B0 -> D* Inu, B+ -> D* Inu disagreement.
 - Check "Inclusive BF = Sum of Exclusive BF"?
- Determine B->Dlnu Form Factor (FF) slope
 - Current uncertainty ~ 30 %.

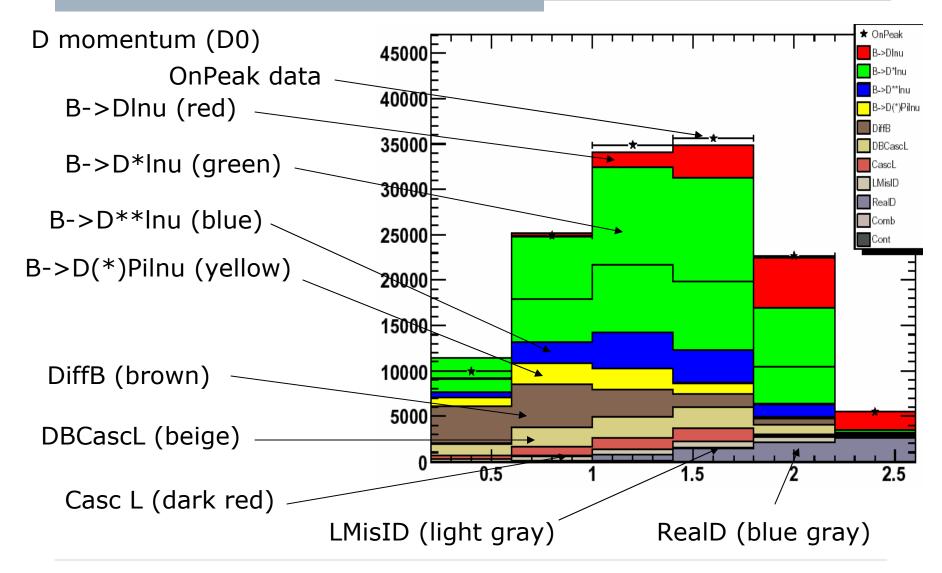
B->Dlnu decay FF and re-weighting

- In B->Dlnu decays, there is one FF:
 - $h+(w) = R*f+(q^2)$
 - $W = (MB^2 + MD^2 q^2)/(2MB*MD)$
 - R=sqrt(MB*MD)/(MB + MD)
- ISGW2 Model and f+(q^2) is used in MC
- HQET
 - $h+(w) = h+(1) [1 rho^2 (w -1)]$
 - rho^2 = FF slope
- Need to re-weight MC to change FF from ISGW2 to HQET
 - No need to generate new MC
 - We can just re-weight event by event (candidate by candidate) when making MC histograms.

Event Selection

- BToDlnu skim
 - Select events including B->D/D*Inu candidates.
 - In practise, select DI combinations.
- Bhabha veto
 - Reject radiative Bhabha events.
- Kaon selection
 - KMicroNotPion selector
- Vertexing (by TreeFitter)
 - D vertexing probab >0.01
 - B vertexing probab >0.01
- Trust cut
 - $\cos \theta_{Dl-\text{non}Dl} < 0.88$

Signal and background


Signal

- B -> D | nu
- B -> D* I nu
- B -> D** | nu
- B -> D(*) Pi I nu (non-resonant)

Background

- DiffB = D and I come from different B. I come directly from B.
- DBCascL = D and I come from different B. I come not directly from B (B -> D -> K I nu).
- CascL = D and I come from same B. I does not come directly from B (B -> D -> K I nu).
- LMisID = / miss identification.
- RealD = ccbar events with real D.

After sideband subtraction

Method of analysis

- Reconstruct only D0 I and D+ I candidates. All higher D state feeds down to D.
 - B->Dlnu
 - B->D*Inu, D*->DX
 - B->D**Inu, D** ->DX
 - B->D Pi Inu (non-resonant)
- Use clean modes D0->KPi and D+->KPiPi.
- Bin events in 3-D: D momentum, Lepton momentum and cosThetaB-DI.
- Fit to B->Dlnu events.
 - Use MC histograms like PDF (Probability Density Functions)
 - Fit those PDFs to measured data.

Binning

- Lepton momentum bin (4bins):
 - 0.8, 1.2, 1.6, 2.0, 2.4 GeV
- D momentum bin (6 bins):
 - 0.2, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6 GeV
- cosBY bin (5 bins):
 - -10, -2.5, -1.1, 0.0, 1.1, 5
- Total 120 * 2 (D+ and D0) = 240 bins
 - Use "#evt > 25" bins -> ~187 bins are used
- Run 3 data (30.6 fb-1)
 and MC (~100 fb-1 of BBbar and ~50 fb-1 of others)
 - was used.

Binned chi-square fitting

$$\chi^{2} = \sum_{i}^{D^{0}} \frac{\left(N_{i}^{data} - \sum_{j} C_{j} N_{ij}^{MC}\right)^{2}}{\left(\sigma_{i}^{data}\right)^{2} + \sum_{j} \left(C_{j} \sigma_{ij}^{MC}\right)^{2}} + \sum_{i}^{D^{+}} \frac{\left(N_{i}^{data} - \sum_{j} C_{j} N_{ij}^{MC}\right)^{2}}{\left(\sigma_{i}^{data}\right)^{2} + \sum_{j} \left(C_{j} \sigma_{ij}^{MC}\right)^{2}}$$

- Predicted number of events (N^{MC})
 - Tracking efficiency and PID corrected.
 - Luminosity normalised to data.
 - Form factor (FF) re-weighted.
- Coefficients (C) include
 - Branching fractions (BF)
 - Ratios like

```
f_+0 = f_+-/f_00 (production rates ratio),

t_0+ = t_00/t_+- (life time ratio),

c_+0 = MC modeling difference in D0 and D+
```

- Isospin symmetry is assumed for B->DlnuX decays (not for D*->D).
- Use TMINUIT to minimize chi-square.

Binned chi-square fitting

- Free parameters
 - Branching fractions
 - BF(B->Dlnu)
 - BF(B->D*Inu)
 - BF(Total B->D**Inu)
 - BF(Total B->D(*)Pilnu)
 - Background components
 - 5 components each for D0 and D+ = 10 parameters
 - Other constants
 - f +0
 - c_+0
- Used constants
 - D** constants : D0*/D1 = 0.88, D1'/D1 = 1.61, D2*/D1 = 0.77
 - D(*)Pi constants : Dpi/D*Pi = 0.66

Validation of fitting

- Split Run3 MC into two halves.
- Use first half as a fake data.
- Fit this fake data by the second half of MC
- Results : looks good
 - Number of bins = 179, number of parameters = 16, number of dof = 190 - 18 = 163
 Chi-square = 154
 - Fitted branching fractions are consistent with the values used in the MC
 - B->Dlnu :0.02073 +- 0.00089 (0.0210 in SP6)
 - B->D*Inu :0.0565 +- 0.0016 (0.0560 in SP6)
 - B->D**Inu :0.01557 +- 0.00099 (0.0150 in SP6)
 - B->D*Pilnu :0.0111 +- 0.0015 (0.0120 in SP6)

First results of fitting to Data

- Branching fractions
 - BF(B->Dlnu) = 0.0250 +- 0.0012 (4.8 %)
 - BF(B->D*Inu) = 0.0614 +- 0.0019 (3.2 %)
 - BF(B->D**Inu) = 0.0109 +- 0.0014 (13 %)
 - BF(B->D(*)Pilnu) = 0.0139 +- 0.0018 (13 %)
- Dlnu FF slope
 - $rho^2 = 1.459 + -0.053 (3.6 \%)$
- Float background components separately for D0 and D+
- Float f+0 and c_+0. Gaussian constraints on f+0 and c_D+0
- No significant correlation between variables.

B+/B0 -> D* Inu BF

- Relase isospin symmetry constarint on B+ -> D*Inu and B0 -> D* Inu
- Result
 - BF(B+ -> D*Inu) = 0.0585 +- 0.0037
 - $BF(B0 \rightarrow D*Inu) = 0.0602 + -0.0049$
- Isospin symmetry holds!
 - Using B+/B0 lifetime ratio t_+0 = 1.071
 - \bullet (0.0602 +- 0.0049) * 1.071 = 0.0645 +- 0.0052

Problems of the fitting results

- #dof = #bins #parameters = 187 17 = 170
 Chi-square = 307 : not really good.
- Some of fitted background components are far from 1.
 - LMisID(D0) = 0.175464 + 0.224735
 - DiffB(D+) = 0.591759 + 0.119507
 - DBCascL(D+) = 0.564115 + 0.155397

Next steps

- Improve chi-square
 - Vary B->D*Inu FF parameters.
 - Re-weight D**Inu MC
 - Re-weight D(*)Pilnu (non-resonant) MC.
- Review constraints on D**Inu and D(*)Pilnu BFs in the fit.
- Review backgrounds.