
Implementing likelihood-based statistical tests
using a toy model in RooFit and RooStats

and

Exploring the basics of TMVA

by

Kayla McLean

kaylamc@uvic.ca

University of Victoria
3800 Finnerty Road

Victoria, British Columbia

Work Term Report

August 2014

Revised May 2015

Department of Physics and Astronomy
University of Victoria

Abstract

Likelihood-based statistical tests are widely used in ATLAS analyses and are extremely important in
testing whether or not data is in agreement with a given hypothesis. After obtaining a dataset, there are
two (of many) important tests to perform. Calculating the p-value for the null hypothesis, p0, is one way
to test of how compatible a dataset is with the background-only hypothesis. If the data is found to be
compatible, as found in this experiment (using a generated dataset), then an upper limit can be set on the
amount of signal that is present. This was done using the test statistic pµ, and finding the 95% confidence
level upper limit on the signal strength, µ. The first half of this report is dedicated to implementing these
tests using RooFit and RooStats, and comparing their results in detail. Applying constraints on nuisance
parameters was also included in this analysis. The second half of the report summarizes some of the basic
discrimination techniques used in TMVA to improve the separation between signal and background events
from a dataset, with a focus on Fisher discriminants and boosted decision trees.

i

Contents

I Likelihood-based statistical tests 1

1 Introduction 1

2 Theory 2
2.1 Test statistic for discovery of a positive signal . 3
2.2 Test statistic for upper limits . 3
2.3 Asymptotics . 4
2.4 Statistical significance . 5

3 Analysis 5
3.1 Toy model . 5
3.2 RooFit . 6
3.3 RooStats . 8

4 Results 9
4.1 RooFit VS RooStats . 9
4.2 Nuisance parameter constraints . 12

5 Conclusions 14

II Exploring TMVA 14

6 Introduction 14

7 Theory 14
7.1 Fisher discriminants . 14
7.2 Boosted decision trees . 15

8 Analysis and Results 16
8.1 Input variables . 16
8.2 TMVA training output . 16

9 Conclusions 18

10 Acknowledgements 18

ii

List of Figures

1 Visualization of the definition of the p-value and Z. 5
2 Experimental data compared to model curve . 6
3 q0 distribution as obtained from RooFit. 10
4 pµ distribution as obtained from RooFit . 10

5 µ̂, λ̂, and µ̂b distributions obtained from RooFit . 11
6 µ̂, λ̂, and µ̂b distributions obtained from RooFit with a G(1, 0.01) constraint on λ 13
7 Classification using linear discrimination. 14
8 Classification using cut-based discrimination. 15
9 An example of a boosted decision tree . 15
10 Input variable distributions for signal and qq background. 16
11 Fisher discriminant response. 17
12 Boosted decision tree response. 17
13 ROC curve comparing Fisher and BDT efficiencies. 17
14 Optimal BDT output cut values. 18

List of Tables

1 Relation between Z, the p-value (one-sided), and the chance to obtain as (or more) incom-
patible data for a given hypothesis. 5

2 Parameter values used to generate experimental dataset. 6
3 RooFit and RooStats result comparisons. 10
4 RooFit and RooStats result comparisons after including a Gaussian constraint on λ. 12

iii

Part I

Likelihood-based
statistical tests

1 Introduction

In the ATLAS experiment, physicists are constantly
searching for new physics beyond what is currently
predicted by the Standard Model. Particle data
from proton-proton collisions is collected from the
ATLAS detector, and is analyzed to find if it is
compatible with our current theories. Perhaps the
most important test to perform on the data is to
determine whether or not it is compatible with the
null (background-only) hypothesis. If it can be de-
termined that the data measured is incompatible
with the null hypothesis, then a discovery can be
claimed.

The method used to determine compatibility be-
tween experimental data and a hypothesis in AT-
LAS is a frequentist likelihood-based approach; we
are interested in the probability to observe as dis-
crepant or more discrepant data than the experi-
mental data, assuming that a given hypothesis is
true (for example, the null hypothesis). If this prob-
ability is large, then the data is compatible with the
hypothesis. However, if this probability is small,
then that means that the chance to observe the
measured data is very unlikely, and the proposed
hypothesis is therefore not likely. This probability
is known as the p-value for the proposed model.
The p-value often quoted alongside discoveries is
the p-value for the null hypothesis, p0, which is a
measure of the compatibility between the measured
data and the null hypothesis. The smaller the value
of p0, the more significant the discovery.

To test the “amount of signal” present in a
dataset, we parametrize the expected number of sig-
nal events as being

〈ns〉 = µs (1)

Here, s is the predicted number of signal events,
and µ is the signal strength. µ is the parameter of
interest in the statistical tests to be discussed in this
report. µ = 0 corresponds to the null hypothesis,

and this is the value that we are interested in testing
our data against.

Once again, testing for compatibility with the
null hypothesis is the most important test to per-
form on our data. This is the first of two tests
discussed in this report. If it is found that the ex-
perimental data is compatible with the null hypoth-
esis, then no discovery can be made; however, one
can then put an upper limit on the signal strength,
given the data. For this purpose, we test our data
against different µ values (not µ = 0) and calculate
a p-value, pµ. From this quantity, we can calculate
an upper limit on µ at the 95% confidence level.
This is the second test to be discussed here.

In order to obtain the p-values for these two tests,
p0 and pµ, we use what are known as test statis-
tics. There are several different test statistics that
exist, and their use depends on the hypotheses be-
ing tested, and on whether or not µ is taken to be
one- or two-sided. For this analysis we chose to use
the test statistics q0 and q̃µ, which are used to test
against the null hypothesis, and to find an upper
limit on µ respectively, for a one-sided µ distribu-
tion [1]. µ is one-sided because we assume that a
new signal would result in an excess of events com-
pared to Standard Model predictions, i.e. µ ≥ 0.
The first part of Section 2 discusses the statistical
theory needed in order to introduce the test statis-
tics q0 in Section 2.1, and q̃µ in Section 2.2. The
main reason for using these test statistics is because
they exhibit well-defined asymptotic behaviour for
large enough datasets; a brief overview of this is
given in Section 2.3.

Using these test statistics, an analysis was carried
out in both RooFit and RooStats, two ROOT pack-
ages, which are typically used for modelling using
probability densities, generating Monte Carlo ex-
periments, and performing hypothesis tests. One
“experimental” dataset was analyzed, which was
generating using a Monte Carlo method and with no
signal (µ = 0). The model used assumed a Gaussian
signal and an exponentially decaying background.
This toy model is discussed in Section 3.1, and the
analysis details for RooFit and RooStats are given
in Sections 3.2 and 3.3 respectively.

The final results from both RooFit and RooStats

are shown in Section 4, along with results after ap-
plying a constraint on one of the nuisance parame-

1

ters, a technique commonly done in ATLAS. Com-
parisons and conclusions are made in Section 5. In
addition, the RooFit and RooStats code used in
this analysis have been made available on SVN [2].

2 Theory

The test statistics used in this analysis are based
on frequentist statistical theory. To begin, we first
parametrize the expected (or average) total number
of events obtained from an experiment. This is the
sum of the expected number of signal events 〈ns〉
and background events 〈nb〉. The amount of ob-
served signal is parametrized by µ, our parameter
of interest. The expected number of total observed
events is therefore defined to be

〈n〉 = 〈ns〉+ 〈nb〉 = µs+ µbb. (2)

From this definition, it is easy to see that µ = 0 cor-
responds to the background-only hypothesis, and
the proposed signal + background hypothesis has
µ = 1. Once again it is assumed that µ ≥ 0. µb is
the background strength parameter ; this parameter
is needed in order to ensure good modelling.1

n follows a Poisson distribution with mean 〈n〉.
The number of signal events follows some proba-
bility density function fs(x|θs), where θs are the
signal nuisance parameters. Likewise, the number
of background events follows fb(x|θb), with θb as
the background nuisance parameters. From this, we
construct a likelihood function for the observed data
x. The likelihood of obtaining the dataset x, given
a model, µ, and the other nuisance parameters θ, is
the product of the probabilities of obtaining n to-
tal events and obtaining the data x. Therefore the
likelihood function is given by the marked Poisson
process

L(x|µ,θ) = Pois(n|〈n〉)
N∏
j=1

f(xj |µ,θ). (3)

1The model used in this analysis is an extended likelihood,
i.e. n is allowed to vary according to a Poisson distribution
(Equation 3). This Poisson mean is 〈n〉 = µs+µbb. Without
this term (n fixed), µ can be scaled so that µb would not be
needed in the likelihood (equivalent to setting µb = 1). In
other words, if you let the total number of events vary, then
you should let both signal and background yields vary.

Here, ~θ =
{
~θs, ~θb, µb

}
. f(x|µ,θ) is the probability

density function of the observable x, as assumed
by the model. This is a combination of signal and
background probability densities:

f(x|µ,θ) =
µsfs(x|θs) + µbbfb(x|θb)

µs+ µbb
(4)

This quantity is normalized, and we demand that
it is always ≥ 0.

It is important to note that the likelihood func-
tion in Equation 3 can be modified to include con-
straints on nuisance parameters previously obtained
from other measurements. For example, if one of
the nuisance parameters, say, θ1, is found to have a
Gaussian distribution with mean µ1 and standard
deviation σ1, then one can include this probability
density in the product of the likelihood function,
providing a constraint in the likelihood fit. Then,
the likelihood function becomes

L(x|µ,θ) = Pois(n|〈n〉)×

 n∏
j=1

f(xj |µ,θ)

×Gauss (µ1|θ1, σ1) .

(5)

Here, µ1 is obtained from the auxiliary measure-
ment. This method is described in detail in many
ATLAS papers; for example, see Section II in the
combined Higgs search paper from July 2012 [3].
A simple case was assumed in this analysis for one
nuisance parameter in both RooFit and RooStats.

Now, given the likelihood function in Equation
3, the frequentist profile likelihood ratio may be de-
fined as

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (6)

The denominator is simply the maximum likelihood
function, and µ̂ and θ̂ are the unconditional maxi-
mum likelihood estimators of µ and θ. These are the
“most likely” estimates for the parameters, given
the data. The numerator is the profiled likelihood

for µ. Here, µ is fixed and ˆ̂θ is the conditional maxi-
mum likelihood estimator for θ. Since the maximum
likelihood is in the denominator, 0 ≤ λ(µ) ≤ 1.
This ratio is useful because it tests a hypothesized
µ against the most probable value obtained from

2

the data, µ̂. If µ and µ̂ are close in value, λ(µ)
will be close to 1. However, if µ is much different
from µ̂, then λ(µ) will decrease because the profiled
likelihood will be less for a µ far from µ̂; therefore
smaller values of λ(µ) correspond to greater incom-
patibility between µ and µ̂. This ratio is included
in the definitions of the test statistics that will be
introduced in the following two sections.

2.1 Test statistic for discovery of a pos-
itive signal

The equations defined in these next three sections
are taken from Cowan et al. [1], unless otherwise
stated. Also, it is important to remember that these
test statistics assume µ ≥ 0, but they allow µ̂ < 0.2

For the discovery of a positive signal we are in-
terested in rejecting the null hypothesis; if we can
reject the µ = 0 hypothesis, then we can claim a
discovery. For this test, the statistic of interest is
defined using the profile likelihood ratio from Equa-
tion 6 with µ = 0:

q0 =

{
−2 lnλ(0) µ̂ ≥ 0

0 µ̂ < 0
(7)

This statistic tests the µ = 0 hypothesis against
µ̂. q0 will always be ≥ 0. If µ̂ is very different
than 0, then λ(0) will be small, corresponding to a
large q0. Therefore larger values of q0 correspond
to increasing incompatibility between µ̂ and µ = 0.
Note that negative µ̂ values are not considered to
be discrepant; this is because we assume that µ ≥
0, however we still want an estimator that can be
negative.

Now the p-value for the null hypothesis can be
defined from q0:

p0 =

∫ ∞
q0,obs

f(q0|0)dq0 (8)

Here, q0,obs is the observed q0 value as obtained from
the experimental data, and f(q0|0) is the probabil-
ity distribution of q0. f(q0|0) can be obtained by

2 One could hypothetically define a test statistic that does
not allow for µ̂ < 0, but letting µ̂ be negative allows for the
modelling of µ̂ as a Gaussian distributed variable. This means
that asymptotics can be used to model the distributions of
q0, q̃µ, and the quantities that follow from them [1].

generating Monte Carlo toys (with various gener-
ated values for n) and calculating q0 for each toy;
however, if the dataset (n) is large enough, then
f(q0|0) can be determined exactly using asymp-
totics (see Section 2.3).

p0 is the probability of a q0 value to be as or more
discrepant with the null hypothesis than the observed
q0. This makes sense; if one obtains a very small p0
value (equivalent to a very large q0 value), then the
probability to have seen the data, assuming µ = 0,
is very small. Yet somehow the data has been ob-
served, despite a very small probability of it hap-
pening. This means that µ̂ is not compatible with
0, and thus the null hypothesis is likely not feasi-
ble. Hence, a new model must be considered where
µ ≥ 0 (i.e. a new discovery can be claimed). Quot-
ing a very small value for p0 is an important test
when declaring a new discovery in ATLAS.

2.2 Test statistic for upper limits

Now we assume that our experimental data is com-
patible with the null hypothesis. In this case, we
can still extract useful information from our data,
despite the fact that a discovery cannot be made.
We are now interested in putting an upper limit on
µ at the 95% confidence level.

Before introducing the test statistic, we need to
define a modified profile likelihood ratio:

λ̃(µ) =

L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0

L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0
(9)

The case with µ̂ ≥ 0 is the ordinary ratio as we
had before in Equation 6. For the case with µ̂ < 0,
µ is set to 0 in the denominator which is now also
a profiled likelihood. The reason for this compli-
cated definition once again has to do with the use
of asymptotics (discussed in the next section). Now
we can define the second test statistic for the pur-
pose of finding an upper limit on µ:

3

q̃µ =

{
−2 ln λ̃(µ) µ̂ ≤ µ
0 µ̂ > µ

=

−2 ln L(µ,

ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ

(10)

The form of this statistic closely resembles that
of q0, except now the directions of the conditional
statements have been reversed. Again, the details
are related to the convenience of asymptotics. For
this test we are most interested in testing various
values of µ against µ̂ (except for a modified ratio
when µ̂ < 0). When µ̂ > µ, q̃µ is set to 0 because
here we do not consider this case to show increas-
ing discrepancy. This is because we are interested in
finding an upper limit on µ. This is the sole purpose
of this test statistic.

Similar to before, we define a p-value for the µ
hypothesis:

pµ =

∫ ∞
q̃µ,obs

f(q̃µ|µ)dq̃µ (11)

This is the p-value for a given µ value. This def-
inition is nearly identical to that for p0, but now
it is an integral over the probability distribution
of q̃µ. Once again this distribution can be deter-
mined from Monte Carlo pseudo-experiments, or
from asymptotics.

Once pµ has been determined for several µ values,
a 95% confidence level upper limit can be set. This
is defined as the the largest value of µ for which
pµ ≥ 0.05. This value, µupper, is the upper limit on
µ at the 95% confidence level. This quantity gives
a measure of the maximum amount of signal that
can be present, given the dataset.

2.3 Asymptotics

The two test statistics of interest in this analysis are
defined in clever ways in order to allow the use of
asymptotic approximations in order to determine
their distributions. These approximations follow
from the work of Wilks [4] and Wald [5]. Their
work predicts the exact form of the profile likeli-
hood ratio for a large dataset (n):

−2 lnλ(µ) =
(µ− µ̂)

σ2
+O

(
1 +

1√
n

)
(12)

This formula assumes that µ̂ has a Gaussian distri-
bution with mean µ′ and RMS σ. From this ap-
proximation, the exact distributions of q0 and q̃µ
are obtained, and toys are not needed in order to
find the corresponding p-values. This is extremely
useful, and is the main reason why asymptotics are
used in these tests.

For the case of q0, the exact definition is given as
follows:

q0 =

{
µ̂2/σ2 µ̂ ≥ 0

0 µ̂ < 0
(13)

From this, the distribution of q0 is

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1
√
q0
e−q0/2, (14)

and the p-value is obtained from the cumulative dis-
tribution function of f(q0|0) as

p0 = 1− F (q0|0), (15)

where F (q0|0) = Φ(
√
q0) (Φ is the cumulative dis-

tribution function of the standard Gaussian).

The equations that follow from q̃µ are almost
identical. The test statistic is found to be

q̃µ =

µ2

σ2 − 2µµ̂
σ2 µ̂ < 0

(µ−µ̂)2
σ2 0 ≤ µ̂ ≤ µ

0 µ̂ > µ

, (16)

with the distribution being

f(q̃µ|µ) =
1

2
δ(q̃µ)

+

1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2

σ2

1√
2π(2µ/σ)

e
− 1

2

(q̃µ+µ2/σ2)2

(2µ/σ)2 q̃µ >
µ2

σ2

(17)

and the p-value given by

pµ = 1− F (q̃µ|µ), (18)

4

This collection of formulas are used to double-check
the distributions obtained from toys. One last im-
portant formula to note is the theoretical value for
the upper limit on µ at confidence level 1− α:

µupper = µ̂+ σΦ−1(1− α) (19)

The paper by Cowan et al. [1] has more details on
these asymptotic equations.

2.4 Statistical significance

When the Higgs boson discovery was first an-
nounced in July 2012, a “5σ significance” was also
quoted. This quantity has a corresponding p-value,
but converting the p-value into units of a Gaussian
standard deviation is more convenient.

Figure 1: Visualization of the definition of the p-
value and Z.

The relationship between the p-value and the sig-
nificance Z is shown in Figure 1. The function φ(x)
is the standard normal distribution, given by

φ(x) =
1√
2π
e−x

2/2. (20)

It should be noted that the p-value shown in Figure
1 is for a one-sided test statistic. In this case the
relationship between Z and the p-value is defined
such that “a Gaussian distributed variable found Z
standard deviations above its mean has an upper-
tail probability equal to p” [1]. Z is therefore

Z = Φ−1(1− p), (21)

where Φ−1 is the quantile (inverse of the cumulative
distribution Φ(x)) of the standard Gaussian.

Table 1 summarizes the corresponding p-values
for a given Z, as well as the “chance” to obtain the
data. This table makes it clear why quoting a value

Z (σ) p-value Chance

1 1.587× 10−1 1/6

2 2.275× 10−2 1/44

3 1.349× 10−3 1/741

4 3.167× 10−5 1/31,574

5 2.867× 10−7 1/3,488,556

Table 1: Relation between Z, the p-value (one-
sided), and the chance to obtain as (or more) in-
compatible data for a given hypothesis.

for Z is more convenient than quoting a p-value. In
ATLAS, a 3σ significance corresponds to “evidence”
for a theory, and a 5σ significance corresponds to a
discovery. For the Higgs discovery, the significance
quoted was calculated from p0.

3 Analysis

3.1 Toy model

In order to study some test statistics, a “proposed”
model must be defined. For this study we used a
Gaussian signal where all parameters were assumed
to be known (hence no nuisance parameters). The
signal probability density function was defined to
be

fs(x|θs) = fs(x) =
1

σx
√

2π
e

−(x−µx)2

2σ2x , (22)

where µx and σx are the mean and standard devia-
tion of the Gaussian signal respectively. Note that
this function is assumed known with no free param-
eters. Similarly, we defined the background as being
an exponentially decaying probability density given
by

fb(x|θb) = fb(x|λ) =
1

λ
e−

x
λ , (23)

where λ is the background shape nuisance parame-
ter.3 The addition of these two probability densities
gives the total model PDF, f(x|µ,θ), as defined in
the likelihood in Equation 3. The other two pa-
rameters, µ and µb, appear in this PDF in order to

3This is not to be confused with the profile likelihood ratio
λ(µ).

5

Figure 2: Experimental data compared to model
curve. The black points are generated with µ = 0
and the blue line is the model assuming µ = 1.

ensure proper normalization (see Equation 4). µb
can be thought of as another nuisance parameter.
µ is our parameter of interest. The nuisance param-
eters are denoted ~θ = {λ, µb}, with ~θb = {λ} and
~θs = {}. x is the random variable we are measur-
ing; it could technically be anything (mass, energy,
etc). This model PDF in particular was formulated
to mimic the PDF used in the H → γγ analysis,
where the x variable was the invariant mass of the
two photons, mγγ .

Figure 2 shows the “experimental” dataset used
in this analysis, as well as the model PDF. The blue
line is not a fit to the data. The data was generated
using Monte Carlos with µ = 0. This was done in
order to ensure that the data would be compatible
with the null hypothesis, and an upper limit test
could be carried out as well. The data therefore
follows the background-only PDF (an exponential
decay). The blue line shows the total PDF with
the Gaussian bump and µ = 1. Table 2 summarizes
the parameter values used in order to generate the
experimental data.

Once the model is defined and the experimental
dataset is generated, the analysis is carried out in
both RooFit and RooStats.

3.2 RooFit

RooFit is a ROOT package meant to “provide a
toolkit for modeling the expected distribution of

Parameter Value

b 1000

s 100

λ 1.0

µb 1.0

µx 2.5

σx 0.2

Table 2: Parameter values used to generate experi-
mental dataset.

events in a physics analysis. Models can be used to
perform likelihood fits, produce plots, and generate
‘toy Monte Carlo’ samples for various studies. The
RooFit tools are integrated with the object-oriented
and interactive ROOT graphical environment” [6].
This is the first tool used to calculate test statistics
for the dataset, and the results are then compared
to the same analysis done in RooStats. The pro-
grams written for this analysis is available on SVN.

There are four main parts to the RooFit program.
The first is dedicated to defining the model PDF
and parameters. A Gaussian PDF object can be
defined using a RooGaussian object. The following
code shows an example of how to do this. The signal
yield µs is also calculated by defining µ and s sepa-
rately as RooRealVars, and then multiplying them
together using RooFormulaVar. Then the model
PDF is created from the signal and background (not
shown) PDFs using RooAddPdf. This automatically
creates an extended likelihood because the yields µs
and µbb are both given as arguments. If only one
argument is given, then RooFit assumes that the
likelihood is not extended.

RooGaussian signal("signal", "gaussian

signal PDF", x, meanx, sigmax);

RooRealVar s("s", "signal yield", 100);

RooRealVar mu("mu", "signal strength",

1., -10., 10.);

RooFormulaVar mus("mus", "mu*s",

RooArgList(mu, s));

RooAddPdf model("model", "gaussian plus

exponential PDF", RooArgList(signal,

background), RooArgList(mus, mubb));

6

The second part of the program is dedicated to
either generating or reading-in experimental data.
The data used in this analysis was generated using
this method and is also provided in a .root file on
SVN. To generate a dataset with only background,
µ is set to 0 and the event yield is determined from
a Poisson distribution with mean 〈n〉 = µs + µbb.
An example of generating a RooDataSet according
to the model, but with µ = 0, is shown in the code
below using a random number generator, where the
generated dataset contains M events.

mu.setVal(0.);

int M = rdm->Poisson(mus.getVal() +

mubb.getVal());

RooDataSet dataset =

model.generate(x,M);

It is important to note that the “experimental”
dataset in this study was generated with M = 1000.

The third section of the program is to calculate
p0. This requires finding qexp0 for the experimen-
tal data, and then running toy pseudo-experiments
and calculating a q0 value for each, according to
Equation 7. For each toy, the values for λ and µb
used to generate are set to ˆ̂λ and ˆ̂µb respectively.
Then the integral is carried out to calculate p0 us-
ing Equation 8. The following section of code shows
the calculation of qexp0 (this is q0,obs in the formula
for p0).

double q0 exp = 0.;

double lambdaHatHat0;

double mubHatHat0;

mu.setVal(0.);

// calculate q0 exp

{
// obtain ordinary NLL

RooFitResult* r =

model.fitTo(*dataset,

Minimizer("Minuit2", "minimize"));

// extract NLL and mu estimator

double nllExp = r->minNll();

double muHatExp0 = mu.getVal();

...

// obtain profiled NLL for mu = 0

mu.setVal(0.);

mu.setConstant();

r = model.fitTo(*dataset,

Minimizer("Minuit2", "minimize"));

// extract profiled lambda and mub

// estimators for quality control

lambdaHatHat0 = lambda.getVal();

mubHatHat0 = mub.getVal();

if (muHatExp0 >= 0.) {
// extract profiled NLL

double pnll = r->minNll();

// calculate q0 exp

q0 exp = 2.*(pnll - nllExp);

}
// otherwise muHat < 0 and q0 exp = 0

}

// let mu vary again for toys

mu.setConstant(false);

Please note that some of the code has been mod-
ified (or omitted) here for clarity. See the full code
for all details.

After this is done for the experimental data, we
run toys by varying n and repeat the exact same
methodology, calculating a q0 for each. The code
below illustrates this, as well as the p-value calcu-
lation.

// loop over toys

for (int i = 1; i <= nToys; ++i) {
double q0 = 0.;

mu.setVal(0.);

mub.setVal(mubHatHat0);

lambda.setVal(lambdaHatHat0);

// create N events from Poisson

// distribution

int N = rdm->Poisson(mus.getVal() +

mubb.getVal());

// generate data from model

RooDataSet* toyData =

model.generate(x, N);

...

7

// obtain ordinary NLL

RooFitResult* r =

model.fitTo(*toyData,

Minimizer("Minuit2", "minimize"));

double nll = r->minNll();

// fill histograms with estimators

hmuHat0->Fill(mu.getVal());

hmuHat0err->Fill(mu.getError());

hlambdaHat0->Fill(lambda.getVal());

hlambdaHat0err->

Fill(lambda.getError());

hmubHat0->Fill(mub.getVal());

hmubHat0err->Fill(mub.getError());

if (mu.getVal() >= 0.) {
// obtain profiled NLL for mu = 0

mu.setVal(0.);

mu.setConstant();

r = model.fitTo(*toyData,

Minimizer("Minuit2", "minimize"));

// extract profiled NLL

double pnll = r->minNll();

// calculate q0 for this toy

q0 = 2.*(pnll - nll);

}

// q0 remains 0 if mu < 0

// let mu vary again for the next toy

mu.setConstant(false);

// track how many times q0 > q0 exp

// to calculate p0

if (q0 > q0 exp) ++n;

// fill histogram with q0 values

f0->Fill(q0);

}

// calculate p-value

double p0 = double(n)/double(nToys); }

For each toy, we track whether or not q0 is larger
than qexp0 . Counting the number of times this oc-
curs, the integral (p-value) is approximately that
number divided by the total number of toys (this is
just the fractional area above qexp0).

Finally, the fourth and last part of the code cal-

culates pµ for a range of µ values, and then finds
the 95% confidence level upper limit on µ. This es-
sentially requires doing the exact same thing as for
the p0 calculation, except the test statistic q̃µ is a
bit more complicated, and we are interested in test-
ing a range of µ values with µ 6= 0, and calculating
pµ. Now we are required to run pseudo-experiments
for each different µ value. This is more compu-
tationally intensive, especially when a scan over a
fine range of µ is required, and thousands of toys
are required for each. Therefore using asymptotics
for finding pµ is highly beneficial since no toys are
needed. No example code is shown for this section
because the idea is similar as for the calculation of
p0. Then at the end the program finds the maxi-
mum µ value above which pµ < 0.05.

Using RooFit is beneficial in that every single
step in the program is controlled directly. However,
at the same time programming every step is time
consuming, and repeating this for every statistical
test is not desirable. So a second tool, RooStats, is
used to repeat this analysis and compare results, as
well as ease of use.

3.3 RooStats

RooStats is a similar ROOT toolkit, but it contains
much more advanced tools for running toys and
computing test statistics. For example, all of the
model information is contained in a class called
RooWorkspace, and a ModelConfig is used to de-
fine different quantities inside the model. Here is
some sample code from the program:

ModelConfig c("config");

c.SetWorkspace(w);

c.SetPdf("model");

c.SetObservable("x");

c.SetParameterOfInterest("mu");

c.SetNuisanceParameters("mub,lambda");

After this initial setup, the calculation of p0
is very easy. The user sets up the test statis-
tic using a ProfileLikelihoodTestStat, and
then sets it to one-sided. Then qexp0 is calcu-
lated from the dataset in one line. Then toys
are set up using ToyMCSampler and the dis-
tribution of q0 is found from the toys using

8

FrequentistCalculator. The result is then sim-
ply extracted using HypoTestResult (see below).

ProfileLikelihoodTestStat* plts = new

ProfileLikelihoodTestStat(*c.GetPdf());

plts->SetOneSidedDiscovery(true);

double q0exp = 2.*

plts->Evaluate(dataset, poi);

ToyMCSampler toymcs(*plts, ntoys);

FrequentistCalculator freqCalc(dataExp,

c, cNull, toymcs);

HypoTestResult freqCalcResult =

*freqCalc.GetHypoTest();

Then p0, along with its error, are obtained from
the HypoTestResult:

double p0 = freqCalcResult.NullPValue();

double p0Error =

freqCalcResult.NullPValueError();

These samples of code show essentially all of
the important lines for the calculation of p0 in the
RooStats program. What took 100 lines to do in
RooFit was done in a handful of lines in RooStats.

For the case of calculating an upper limit, the
results are similar; RooStats already has the func-
tions programmed in order to do this easily. The
method used to calculate the upper limit is known
as the Feldman Cousins technique. The code
below shows an example of how to set up the
FeldmanCousins tool, setting the confidence level,
and setting up the ProfileLikelihoodTestStat

q̃µ. nMus is the number of µ values to study for
the current range that µ has in its RooRealVar def-
inition. nToysPerMu is the number of toys done for
a given µ value.

FeldmanCousins fc(dataset, cNull);

fc.SetConfidenceLevel(0.95);

fc.SetNBins(nMus);

ToyMCSampler* toymcs =

(ToyMCSampler*)fc.GetTestStatSampler();

toymcs->SetNToys(nToysPerMu);

ProfileLikelihoodTestStat* qmu = dynamic

cast<ProfileLikelihoodTestStat*>(toym

cs->GetTestStatistic());

qmu->SetOneSided(true);

Then the upper limit is extracted from the interval
calculator:

PointSetInterval* interval =

fc.GetInterval();

double observedUL =

interval->UpperLimit(*mu);

Once again, this example code does all of the cal-
culations needed to find the upper limit, compared
to pages of code needed to do the same in RooFit.
This makes RooStats very useful in comparison;
however, one of its downfalls is that it does not allow
for the monitoring of toys. For example, in RooFit

it is very easy to extract the estimator information
for each toy, and plot their distributions (this is
discussed in Section 4). This is not possible with
RooStats. Everything is hidden “under the hood”
and away from the user. Therefore the user needs
to be confident that they understand RooStats and
the complicated classes that it consists of.

4 Results

4.1 RooFit VS RooStats

This section summarizes the results from both
RooFit and RooStats. Table 3 provides a brief
summary of all estimator and test statistic values
obtained from both. Overall we see extremely good
agreement for estimator values, qexp0 , and p0. The
upper limits are very similar to the asymptotic pre-
diction, but they do differ by a few percent; this is
expected to be due to the randomness of the toy
Monte Carlos used to find the distribution of pµ.
We don’t expect them to be exactly the same; the

9

Quantity RooFit RooStats

µ̂ 0.135 ± 0.095 0.135 ± 0.095

µ̂b 0.986 ± 0.033 0.986 ± 0.033

λ̂ 0.965 ± 0.037 0.965 ± 0.037
ˆ̂µb (µ = 0) 1.000 ± 0.032 1.000 ± 0.032
ˆ̂λ (µ = 0) 0.990 ± 0.034 0.990 ± 0.034

qexp0 2.228 2.228

p0 0.067 0.067 ± 0.002

pth0 0.068 0.068

Z 1.5σ 1.5σ

µupper 0.308 0.322

µupperth 0.309 0.309

Table 3: RooFit and RooStats result comparisons.

Figure 3: q0 distribution as obtained from RooFit.

experimental datasets were identical, but the toys
were not of course. It is also interesting to note that
µ̂ for the dataset was 0.135; there was a statistical
fluctuation in the data so that a small excess was
seen. This is often what happens in an experiment,
but this analysis showed that it was nothing to get
excited about (Z = 1.5σ).

Figure 3 shows f(q0|0) using RooFit (a nearly
identical plot can be easily extracted from
HypoTestPlot in RooStats with one command).
The red line on the plot shows the asymptotic pre-
diction for f(q0|0), as given by Equation 14. The
plot shown was generated for 10,000 toys. Sim-
ilarly, Figure 4 shows the distribution of pµ for

Figure 4: pµ distribution as obtained from RooFit

(the green line provides a visual aid and is not ex-
actly accurate).

0 < µ ≤ 0.4. Once again the red line is the asymp-
totic prediction given by Equation 18. The green
line shows where pµ = 0.05, and the corresponding
µupper. This plot was not obtainable in RooStats;
it simply calculates the upper limit, and does not
allow the user to extract/plot any information from
the toys used to find pµ. This made it difficult to
verify that the toys were being generated in the cor-
rect manner.

Monitoring toys was entirely possible using
RooFit. Estimator values can be extracted easily
by calling – for the case of µ̂ – mu.getVal() and
mu.getError() after minimizing the negative log-
likelihood. Then the estimator distributions may be
plotted and monitored to ensure that they have the
correct mean, that they follow a Gaussian distri-
bution, etc. Unexpected behaviours in these plots
led to the discovery of a bug in the program, or an
error in the modelling. This was how it was deter-
mined that the µb nuisance parameter was needed
in the model, because biases were seen in these plots
without it. The correct distributions obtained from
RooFit are shown in Figure 5.

The final step is to apply a nuisance parameter
constraint to the likelihood, seeing as this is a very
important procedure in ATLAS analyses. This is
discussed in the next section.

10

Figure 5: µ̂, λ̂, and µ̂b distributions obtained from RooFit (µ = 0 for p0 calculation), and their errors.

11

4.2 Nuisance parameter constraints

Auxiliary measurements of nuisance parameters
can be included in the likelihood function. This
constrains the minimization of the negative log-
likelihood in hopes of improving p0 and the upper
limit. In this analysis a Gaussian constraint is ap-
plied to λ, according to Equation 5. Now the like-
lihood function looks like

L(~x|µ, λ, µb) = Pois(n|〈n〉)

×

 n∏
j=1

f(xj |µ, λ, µb)

×Gauss

(
µ̃λ|ˆ̂λ, σλ

)
.

(24)

Here, µ̃λ is the mean value of λ drawn its Gaussian
distribution from the auxiliary measurement. This
is discussed in more detail at the end of this section.

In RooFit and RooStats applying this constraint
is very simple to do. During the model definition
the original model, now called premodel, is multi-
plied by the Gaussian PDF constraint gauss using
RooProdPdf:

RooGaussian gauss("gauss", "gauss",

lambda, meanlambda, sigmalambda);

RooProdPdf model("model",

"premodel*gauss", RooArgList(premodel,

gauss));

We wanted to apply a tight constraint on λ, so
we looked at the λ̂ distribution from Figure 5 and
chose σλ = 0.01. The original λ̂ distribution had
an RMS of 0.037, so providing a tighter constraint
with an RMS of 0.01 should show improved results
compared with no constraint.

The estimator distributions with the constraint
applied are shown in Figure 6, and the values ob-
tained for the parameters are given in Table 4. The
distribution of λ̂ now has an RMS near 0.01, and
the error has a much smaller RMS compared with
no constraint. This is reflected in Table 4; with
the constraint, the value for µ̂ has decreased to
0.102 from 0.135. p0 has also increased to 0.108
from 0.067, signifying that the data is more com-
patible with the null hypothesis with the constraint
included. This is as we expected, since the experi-
mental dataset was generated with µ = 0 and λ = 1,

Quantity RooFit RooStats

µ̂ 0.102 ± 0.087 0.102 ± 0.087

µ̂b 0.990 ± 0.032 0.990 ± 0.032

λ̂ 0.998 ± 0.010 0.998 ± 0.010
ˆ̂µb (µ = 0) 1.000 ± 0.032 1.000 ± 0.032
ˆ̂λ (µ = 0) 0.999 ± 0.010 0.999 ± 0.010

qexp0 1.527 1.527

p0 0.108 0.1000 ± 0.001

pth0 0.108 0.108

Z 1.24σ 1.28σ

µupper 0.267 0.271

µupperth 0.260 0.260

Table 4: RooFit and RooStats result comparisons
after including a Gaussian constraint on λ.

and now we are constraining λ closer to 1 by reduc-
ing the RMS. Now the model is in better agreement
with the data, so we expect a larger p-value. We
also see that µupper has improved, decreasing from
∼ 0.31 to closer to 0.27.
RooFit and RooStats handle including con-

straints differently. Once the modified model has
been defined, RooStats knows exactly how to han-
dle everything automatically. In RooFit the toys
must be generated manually, and the correct values
of λ must be used in order to obtain the correct
λ̂ distribution. In RooFit, for each toy, the value
of λ is drawn from the Gaussian distribution (with

mean ˆ̂λ and standard deviation σλ), and is set to
µ̃λ. This can be thought of as a separate experi-
ment that is done simultaneously. The mean of the

Gaussian that it is drawn from is set to ˆ̂λ.

// generate lambda according to the

// Gaussian constraint

double toyLambda = rdm->Gaus(1.0, 0.01);

// set mean of constraint to toyLambda

meanlambda.setVal(toyLambda);

Please note that in the RooFit code provided, the
mean is set to 1, but it should actually be set to

the value of ˆ̂λ, as in Table 4. The toys are then
generated using this value for λ̂. These steps are
necessary in RooFit in order to generate toys that
follow an unbiased Gaussian λ̂ distribution [7], [8].

12

Figure 6: µ̂, λ̂, and µ̂b distributions obtained from RooFit with a G(1, 0.01) constraint on λ (µ = 0 for p0 calculation), and their errors.

13

5 Conclusions

This analysis was successful in using both RooFit

and RooStats to calculate two likelihood-based test
statistics for an experimental dataset using a toy
model. Using RooFit, it was easy to tweak every
step in the program and do checks to ensure that
the analysis was being done correctly. At the same
time, programming these two tests was time con-
suming and there were many complicated details to
consider. Using RooStats was much easier in terms
of the amount of programming required, but the de-
tails used in its complex classes are mostly hidden
from the user. For this reason, learning the methods
for these analyses would have been very difficult if
RooStats was used before RooFit. However, once
the user was comfortable enough using RooStats,
then one could really appreciate and trust the func-
tions that it already has in place. Overall, using
both toolkits was very useful in learning about the
methods of likelihood-based tests in ATLAS.

Part II

Exploring TMVA

6 Introduction

In ATLAS we are often interested in the number
of signal events present in an experimental dataset.
Each event has variables {x1, x2, ...} associated with
it, for example energy of a given particle, etc. From
these variables it is possible to distinguish between
signal and background events, and the difficulty in
doing so depends on the differences in signal and
background distributions. If the signal particles
have some energy, and background particles have
very different energies, then it will be easier to dis-
tinguish between them. But what happens when
the signal events have very similar variable distri-
butions compared to background? Then it becomes
difficult to detect the differences. This is where mul-
tivariate analysis (MVA) techniques become useful.

MVA techniques are used to help distinguish be-
tween signal and background events by using input
variables of each event. First, a training sample
dataset is used to “train” the classifier. There are

several different types of MVA methods, each with
its own pros and cons; they all use different tech-
niques to determine the classification of an event as
signal or background. Once the training is done,
tests can be performed to test for overtraining and
to verify how efficient the classifier is at identify-
ing signal and background events. TMVA is a ROOT

package that does these tests automatically, and
makes it easy to compare the training results of sev-
eral different classifiers at once. After the classifier
is trained, then it can be used to actually classify
“real” events.

In this report the focus will be on the training of
the classifiers and evaluating how well each worked
at distinguishing between signal and background;
I will discuss implementing two different kinds of
methods in TMVA: Fisher discriminants and boosted
decision trees. The dataset analyzed in this study
are Monte Carlo events from a H → WW → eνµν
study with two sources of background and four in-
put variables. The details will be discussed in the
Analysis section.

7 Theory

7.1 Fisher discriminants

Figure 7: Classification using linear discrimination.

Figure 7 shows an example of linear discriminant
analysis. If H0 are signal events and H1 are back-
ground events, the discriminator determines a linear
combination of the variables x1 and x2 in order to
provide the best discrimination between signal and
background.

14

The TMVA User’s Guide [10] describes the details
of Fisher discriminants (as well as boosted decision
trees). Here I give the general concept of Fisher
discriminants as given in the guide:

“In the method of Fisher discriminants
event selection is performed in a trans-
formed variable space with zero linear cor-
relations, by distinguishing the mean val-
ues of the signal and background distri-
butions. The linear discriminant analysis
determines an axis in the (correlated) hy-
perspace of the input variables such that,
when projecting the output classes (signal
and background) upon this axis, they are
pushed as far as possible away from each
other, while events of a same class are con-
fined in a close vicinity.”

The discriminant itself is calculated using what
are known as Fisher coefficients:

Fk =

√
NSNB

NS +NB

nvar∑
`=1

W−1k` (x̄S,` − x̄B,`) (25)

Here, NS(B) are the number of signal (background)
events, x̄S(B),` is the class-specific sample means for
signal (background) of the `th input variable, and
Wk` is the within-class matrix :

Wk` =
∑

U=S,B

〈xU,k − x̄U,k〉〈xU,` − x̄U,`〉

= CS,k` + CB,k`

(26)

The Fisher coefficients are then used to calculate
the Fisher discriminant

yFi(i) = F0 +

nvar∑
k=1

Fkxk(i). (27)

F0 is an offset which centres the sample mean ȳFi
of all Ns +Nb events to zero.

Fisher discrimination is the first method stud-
ied in this analysis. Overall Fisher discriminants
have very good qualities; they are quick to train,
are not susceptible to overtraining, and are robust
even when weak input variables are included in the
training. Their major downfall is that they have
difficulties discriminating variables that have non-
linear relationships.

7.2 Boosted decision trees

Figure 8: Classification using cut-based discrimina-
tion.

Figure 9: An example of a boosted decision tree [10]

Figure 8 shows an example of how a boosted de-
cision tree (BDT) decides to discriminate between
signal and background events using cuts on input
variables. This is typically the simplest way to pro-
vide discrimination between signal and background
events. For example, if an event has a particle with
energy below a certain threshold, classify the event
as signal.

The actual application is more complicated, how-
ever, but it is much more effective; each variable cut
forms a branch on a tree of decisions, and they de-
pend on the preceding cuts (see Figure 9). At each

15

node the BDT makes a cut to provide the best dis-
crimination between signal and background. The
BDT runs through a series of cuts before classi-
fying an event as signal or background; these are
called leaf nodes. During the training process, once
the tree has classified the events in the training
sample, then those events are reweighted accord-
ing to which events were misclassified. Then the
reweighted events are run through another tree and
it makes optimal cuts again. This is then repeated
for a forest of trees, until the trees are combined
into a single classifier.

BDTs are popular in ATLAS. Unlike Fisher dis-
criminants, they are able to perform well with non-
linear relationships between input variables, which
is a huge advantage. However they do take longer
to train, and they are susceptible to overtraining.
But there are tests in place to monitor this. BDTs
typically only train on half of the training sample.
After training, the other half of the dataset, called
the test sample, is used to test for overtraining.

8 Analysis and Results

The signal events for this analysis are Higgs pro-
duced via gluon-gluon fusion, followed by the decay
H → WW → eνµν. There are several different
backgrounds for this process; the two used to train
classifiers in this study are gg →WW → eνµν and
qq →WW → eνµν.

8.1 Input variables

Figure 10 shows the four input variables used in this
analysis for the signal and the qq → WW back-
ground. The first plot which shows the distribution
of MT TrackHWW Clj is the transverse mass of the
system. The invariant mass of the Higgs particle
cannot be reconstructed due to the two undetected
neutrinos in the final state. The transverse mass is
defined as follows:

mT =
√
E2
T,``+νν − |~pT,``+νν |2

=

√(
ET,`` + E miss

T

)2 − |~pT,`` + ~pmiss
T |2

(28)

Here ET and pT are the transverse energy and
transverse momentum of the quantity (``, `` + νν,

Figure 10: Input variable distributions for signal
and qq background.

or missing). In addition, Emiss
T = |~pmiss

T |, where
~pmiss
T = −

∑
~pT for all measured particles.

The other three variables have simpler defini-
tions. m`` is the invariant mass of the two leptons,
pT,`` is the transverse momentum of the two lep-
tons, and ∆φ`` is the azimuthal angle between the
two leptons.

These four variables provide good discrimination
between signal and background events. The dis-
crimination is best when the input variables have
different distributions between signal and back-
ground events. In analyses such as Higgs parity
studies, the signal and background variable distri-
butions are not distinguishable by eye. It was shown
for this analysis that mT provides the most discrim-
ination out of these four variables. This was done
by analyzing the ROC curve after removing each
variable from the training (more on ROC curves in
the next section).

8.2 TMVA training output

After training, TMVA automatically produces the re-
sults needed to evaluate the training, including the
correlation matrices for variables and the classi-
fier response. Figure 11 shows the response of the

16

Figure 11: Fisher discriminant response.

Figure 12: Boosted decision tree response.

Fisher classifier. The response is shown for signal
and background events for both the training and
test samples. The response itself is a variable that
the Fisher classifier creates to identify how “signal-
like” or “background-like” an event is. Events closer
to −3 are more like background, and events closer
to +3 are more like signal. The blue curve is gener-
ally higher, which is good because this is the signal
distribution. The background distribution is more
“background-like,” as it should be. Unfortunately
there is a lot of overlap between the two distribu-
tions, and there are not a lot of background events
near −3.

Figure 12 shows the BDT response which ranges
from −1 (background) to 1 (signal). There is a very

Figure 13: ROC curve comparing Fisher and BDT
efficiencies.

clear difference between the signal and background
distributions. Most of the background events are
down near −1, which is ideal, and many signal
events are higher between 0 and 1. Compared to the
Fisher discriminator, the BDT performed much bet-
ter when discriminating between signal and back-
ground.

Figure 13 clearly illustrates this difference. This
is known as a ROC (receiver operating characteris-
tic) curve, and it is a plot of (1− background effi-
ciency) against signal efficiency. Ideally this curve
would have a background rejection of 1 and a sig-
nal efficiency of 1 (this would give the maximum
area of 1 under the ROC curve), but the two curves
shown are more realistic cases of what they look
like. The red curve corresponds to the BDT clas-
sifier, which has better background rejection at a
given signal efficiency compared to the Fisher dis-
criminant method. As expected, the BDT has bet-
ter performance because it is able to discriminate
well between variables that have non-linear relation-
ships. This is the major downfall of using Fisher
discriminants. It should also be noted that TMVA

automatically overlays the ROC curves for several
different MVA methods, giving a very useful way to
monitor the performance for different methods.

TMVA also automatically displays the optimal
BDT response cut in order to obtain the best pos-
sible signal significance (Figure 14). This same plot
is also generated for the Fisher method. Using the
TMVA GUI allows the user to input the number of

17

Figure 14: Optimal BDT output cut values.

signal and background events, and the plot will au-
tomatically update to accommodate the change.

9 Conclusions

This study provided a brief overview of some of the
tools available in TMVA, and is certainly not meant
as a complete guide. More detailed analyses have
been done for H → WW → eνµν using BDTs,
including using them to classify events. Please see
Manuela Venturi’s PhD thesis [11] for a much more
detailed analysis.

Overall, TMVA was a very useful tool to train and
study the responses of several MVA techniques at
once. There is an entire suite of discriminator meth-
ods available in TMVA, each with its own pros and
cons. It was extremely easy to manipulate vari-
ables, method booking options, etc., and observe
the change in response. For any analysis that re-
quires the use of MVA techniques, this kind of tool
is simply invaluable.

10 Acknowledgements

Thank you to Michel Lefebvre for being an incred-
ible, patient supervisor. His guidance and enthu-
siasm were incredibly motivating, and I am very
grateful for having the opportunity to work with
him this summer. My passion for particle physics
is growing stronger every day, and I am very excited
to continue on in ATLAS for my MSc.

References

[1] G. Cowan et al. (2013), arXiv:1007.1727v3
[physics.data-an].

[2] RooFit code (including dataset): svn.cern.

ch/reps/atlas-kmclean/ROOTExamples/

RooFitToy/tags/RooFitToy-00-00-01.
RooStats code: svn.cern.ch/

reps/atlas-kmclean/ROOTExamples/

RooStatsToy/tags/RooStatsToy-00-00-00.

[3] The ATLAS Collaboration. Combined search
for the Standard Model Higgs boson in pp col-
lisions at s = 7 TeV with the ATLAS detector.
arXiv:1207.0319 [hep-ex].

[4] S. S. Wilks, The large-sample distribution of
the likelihood ratio for testing composite hy-
potheses, Ann. Math. Statist. 9 (1938) 60-2.

[5] A. Wald. Tests of Statistical Hypotheses Con-
cerning Several Parameters When the Number
of Observations is Large, Transactions of the
American Mathematical Society, Vol. 54, No.
3 (Nov., 1943), pp. 426-482.

[6] RooFit documentation. Website, accessed May
2014, http://roofit.sourceforge.net/.

[7] L. Demortier and L. Lyons. Everything you al-
ways wanted to know about pulls, CDF note
(2002) 43.

[8] T. Moritz Karbach, M. Schlupp. (2012),
arXiv:1210.7141 [physics.data-an].

[9] RooStats TWiki page. Website, accessed
June 2014, https://twiki.cern.ch/twiki/

bin/view/RooStats/WebHome.

[10] TMVA User’s Guide. PDF file, accessed July
2014, http://tmva.sourceforge.net/docu/

TMVAUsersGuide.pdf.

[11] Manuela Venturi. Search for the Standard
Model Higgs boson in the H → W+W− →
`+ν`−ν̄ final state with the ATLAS experiment
and study of its spin and parity quantum num-
bers. PhD thesis, Albert Ludwigs University
Freiburg, 2014.

18

