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Abstract

We use a global fit to determine the form factor slopes and branching fractions

of the decays B → D�ν and B → D∗�ν. We reconstruct D� pairs and con-

struct a 3-dimensional distribution binned in lepton momentum, D momentum and

cos ΘB−D�. These kinematic variables provide good separation between the signal

and background. We fit electron and muon samples separately and combine them

after calculating systematic uncertainties. The form factor slopes, ρ2
D for B → D�ν

and ρ2 for B → D∗�ν decays, are measured to be ρ2
D = 1.23 ± 0.04 ± 0.07 and

ρ2 = 1.21± 0.02 ± 0.07, where the errors are statistical and systematic, respectively.

Branching fractions are fitted to be B(B+ → D̄0�+ν) = (2.38 ± 0.03 ± 0.12) % and

B(B+ → D̄∗0�+ν) = (5.32 ± 0.02 ± 0.21) %. We use these results to determine the

products, G(1)|Vcb| = (44.1±0.8±2.2)×10−3 and F(1)|Vcb| = (35.6±0.2±1.2)×10−3
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of the form factors at zero recoil and the CKM matrix element |Vcb|, from which |Vcb|
can be extracted using theoretical input.
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Chapter 1

Introduction

The Standard Model of particle physics describes the properties and the interactions

of fundamental particles. Although it is very successful, it is incomplete. It fails to

account for most of the mass in the universe called the dark matter, which is inferred

from observations in astrophysics. It also fails to account for non-zero neutrino

masses, which are implied by neutrino oscillation experiments. Even within the

domains of its applicability, it has about two dozen free parameters to be determined

by experiment. Quantitative tests of the standard model, as well as the searches for

physics beyond the standard model, require precise knowledge of these parameters.

This thesis address the determination of one of these parameters and lays a ground

work of improved determination of another parameter.

In the Standard Model, there are three families of fundamental particles. The

second and the third families behave as more massive partners of the first. The

families are classified by a quantity called “flavor”. Among the fundamental inter-

actions of the Standard Model, only the charged weak interaction can change flavor.

This interaction is responsible for the radioactive decay of nuclei, which is the result

of a transition between two different quark flavors. The flavor changing interaction

produces many fascinating phenomena : particle-antiparticle oscillations, neutrino

oscillations and particle-antiparticle (CP) symmetry violation. These phenomena
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in the quark sector are related to the complex 3×3 CKM matrix in the Standard

Model. This matrix mixes different flavors of quarks and the non-vanishing phase of

the matrix is responsible for the violation of CP (particle-antiparticle) symmetry.

Particle-antiparticle oscillations and CP violation have been observed inK mesons,

and similar observations in B mesons were expected. A B meson is composed of an

anti-bottom quark and either an up or down quark. Two experimental facilities were

built in 1990s to investigate the properties of B mesons. One is the BaBar experi-

ment at SLAC (Stanford Linear Acceleration Center, California, USA) and the other

is the BELLE experiment at KEK (High Energy Accelerator Research Organization,

Tsukuba, Japan). They have tuned their accelerators, PEP-II at SLAC and KEKB

at KEK, to produce B meson pairs for more than 9 years. These machines are called

B-factories because they produce B mesons with a higher rate than other experiments

have ever done. The primary targets of B-factories are to quantitatively determine

the mechanism of CP-violation in B mesons and to measure the fundamental param-

eters of the Standard Model related to B physics with high precision.

In this dissertation, we are interested in semileptonic decays of the type B →
Xc�ν. Here, � is an electron or a muon, ν is a neutrino and Xc is a hadronic system

including a charm quark. Details of these particles and semileptonic decays are

explained in chapter 2. The main features of these decays are

• They are experimentally accessible and theoretically clean.

• We can measure one of the fundamental parameters of the Standard Model,

|Vcb|, through these decays.

There remain problems in our understanding of these decays :

• B0 → D∗−�+ν decay 1 branching fraction measurements disagree.

Existing measurements are summarized in Table 1.1. The results vary from

1Charge conjugate modes are implied throughout this text
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Branching Fraction Experiment (year)

0.0459 ± 0.0023 ± 0.0040 BELLE (2002) [1]
0.0470 ± 0.0013+0.0036

−0.0031 DELPHI (2001) [2]
0.0490 ± 0.0007+0.0036

−0.0035 BABAR (2005) [3]
0.0526 ± 0.0020 ± 0.0046 OPAL (2000) [4]
0.0553 ± 0.0026 ± 0.0052 ALEPH (1997) [5]
0.0590 ± 0.0022 ± 0.0050 DELPHI (2004) [6]
0.0609 ± 0.0019 ± 0.0040 CLEO (2003) [7]

Table 1.1: [B0 → D∗�ν BF] B0 → D∗−�+ν branching fractions from different experi-
ments. The first uncertainty is statistical and the second one is systematic.

ρ2
D Experiment (year) Decay mode

0.97 ± 0.98 ± 0.38 ALEPH (1997) [5] B0 → D−�+ν
1.12 ± 0.22 ± 0.14 BELLE (2002) [8] B0 → D−�+ν
1.27 ± 0.25 ± 0.14 CLEO (1999) [9] B0 → D−�+ν and B+ → D̄0�+ν

Table 1.2: [B → D�ν FF slope] Form factor slope ρ2
D from different experiments. The

first uncertainty is statistic and the second one is systematic.

0.0459 (BELLE) to 0.0609 (CLEO), and those measurements are not consistent

with each other.

• B → D�ν decay form factor slope is not well measured.

Existing measurements are listed in Table 1.2. The best measurement from

BELLE has a 23 % uncertainty.

• There is a discrepancy between the inclusive and the sum of exclusive branching

fractions. In principle, the sum of the branching fractions of exclusive modes

is equal to the inclusive branching fraction. The inclusive branching fraction

as well as the two major exclusive modes B → D�ν and B → D∗�ν have

been measured by many experiments. In addition, recently the B → D(∗)π�ν

mode was measured [10,11] with good precision. However, these three exclusive

modes do not add up to inclusive branching fraction. It is evident something is

missing. The most probable candidates are decays of the type of B → D(∗)ππ�ν
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and B → D
(∗)
s K(∗)�ν, which have never been measured.

The B → D∗�ν decay mode has the largest branching fraction of any B decay. Thus,

it is important to solve the above problems.

In existing measurements, each decay mode is reconstructed exclusively to mea-

sure branching fractions or form factor parameters. However, the above problems

are related with each other and cannot be easily solved by looking at a single decay

mode. For example, to reconstruct D∗, we need to reconstruct its decay product π.

However the π moves very slowly and is difficult to detect. All existing measure-

ments of B → D∗�ν decays have uncertainties related to this issue. Moreover, the

B → D�ν measurements suffer from large background from mis-reconstructed D∗�ν

decays. We use a global fit to pairs of D mesons and leptons to measure simultane-

ously the branching fractions and form factor parameters of the principal semileptonic

decay modes B → D�ν and B → D∗�ν. The two decay modes are distinguished from

each other and from backgrounds via their different kinematic signatures in a 3-

dimensional space. As a result, the measurements have no uncertainty related to

slow pion reconstruction.

The measurement described in Ref. [11] takes similar approach. It simultaneously

determines the B → D�ν, B → D∗�ν and B → D(∗)π�ν branching fractions. In that

analysis, they fully reconstruct one B meson and look at semileptonic decays of the

other B. They reconstruct all particles except the neutrino. Thus, they can use

the conservation of 4-momentum to separate signal, where the only missing particle

is the massless neutrino, from background. The measurement is complementary to

ours because it uses explicit D∗ reconstruction and does not measure form factor

parameters due to the limited statistics of the fully reconstructed samples.

In order to measure another parameter, |Vub|, of the Standard Model, semileptonic

decays of the type B → Xu�ν is used. Here Xu is a hadronic system including a up

quark. The dominant background in the measurements is B → Xc�ν decays and
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uncertainties related to this background is one of the dominant systematic errors in

|Vub|. Thus, a better understanding and precise measurements of B → Xc�ν decays

is a major factor to further improve the determination of |Vub|.
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Chapter 2

Theory

2.1 The standard model of particle physics

The Standard Model (SM) of particle physics [12–14] is a very successful theory.

It has survived many experimental tests in the past three decades. In this theory

matter consists of three families of quarks and leptons and forces or interactions

between them are mediated by gauge bosons. There are four types of fundamental

interactions : gravity, electromagnetic, weak and strong. Gravity is too small and

usually plays no role in particle physics at currently accessible energies. Strong

interactions are mediated by gluons, weak interactions by weak bosons (W and Z)

and electromagnetic interactions by photons. These are listed in Table 2.1.

Each particle has an associated anti-particle. Anti-particles have opposite quan-

tum numbers. For example, anti-muons have positive charge. The mass, charge and

Family First Second Third
Leptons electron e− muon µ− tau τ−

neutrino νe νµ ντ

Quarks up (u) charm (c) top (t)
down (d) strange (s) bottom (beauty b)

Interactions Electromagnetic Weak Strong
Gauge bosons photon γ weak bosons W±, Z0 gluon g

Table 2.1: Fundamental constituents in the Standard Model.
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mass charge spin

e 0.511 MeV -1 1/2
µ 106 MeV -1 1/2
τ 1777 MeV -1 1/2
νe 0 0 1/2
νµ 0 0 1/2
ντ 0 0 1/2
u (1.5 − 3.0) × 10−3 GeV +2/3 1/2
c 1.25 ± 0.09 GeV +2/3 1/2
t 172.5 ± 2.7 GeV +2/3 1/2
d (3 − 7) × 10−3 GeV -1/3 1/2
s 0.95 ± 0.25 GeV -1/3 1/2
b 4.20 ± 0.07 GeV -1/3 1/2
γ 0 0 1
W± 80.4 GeV ±1 1
Z 91.2 GeV 0 1
g 0 0 1

Table 2.2: Mass, charge and spin of fundamental constituents in the Standard Model.
Charges are given in the unit of proton charge. Neutrino mass is not zero. However, massive
neutrinos have not yet been integrated into the Standard Model.

spin of the fundamental constituents are listed in Table 2.2. It has recently been

established through measurements that at least two of the neutrino species have non-

zero mass [15], but we did not include the new discovery in the Table. Note that we

use natural units (� = 1 and c = 1); thus, energy, momentum and mass have the

same unit.

2.1.1 Strong Interactions

Strong interactions are the interactions between quarks and gluons and are governed

by Quantum Chromo-Dynamics (QCD), which is a part of the Standard Model. No

single quark has ever been isolated. This is called confinement, which is a feature

of QCD. In QCD, quarks and gluons have a charge called color. There are three

fundamental color charges, red, green and blue, and QCD has a group structure

SUc(3); the c stands for color. If you could isolate a bare quark, you would see its

color charge. However, QCD allows only color-less combinations of quarks to exist
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meson quark contents

π0 uū or dd̄
π+ ud̄
K0 ds̄
K+ us̄
D0 cū
D+ cd̄
B0 db̄
B+ ub̄

Table 2.3: Quark contents of mesons.

in isolation. If we combine red and anti-red quarks, the pair is color-less, as is the

combination of red, green and blue quarks. Thus, quarks always appear as a quark

- anti-quark pair or a combination of three quarks. Quark - anti-quark pairs form

mesons, and combinations of three quarks form baryons. For example, a B0 meson

consists of d and b̄ (anti-b) quarks, and a B+ meson of u and b̄ quarks. Other mesons

are listed in Table 2.3. A proton is a baryon and is made of two u quarks and one

d quark. Baryons and mesons are both called hadrons. As quarks are confined in

hadrons, all fundamental particles we can isolate are divided into two categories :

leptons and hadrons.

2.1.2 Electroweak interactions

Electromagnetic and weak interactions are unified into electroweak interactions, whose

group structure is SU(2) × UY (1). This Y represents the weak hypercharge and the

charge of SU(2) is called weak isospin. Weak hypercharge and weak isospin are not

conserved because the SU(2)×UY (1) symmetry is broken. The only conserved charge

is the electric charge. However, the properties of SU(2) can be seen, for example, in

the interactions between weak bosons and photons. The mechanism to break elec-

troweak symmetry has not yet known. Among many theoretical predictions, the most

popular one is so called Higgs mechanism.

There are two types of weak interactions : neutral weak interactions, which are
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mediated by Z0 and charged weak interactions, which are mediated by W±. The

charged weak interaction is the only fundamental interaction which violates flavor

conservation and CP symmetry. This is done by coupling up-type and down-type

quarks as explained in the following section. The neutral weak interaction couples

up-type quarks with up-type quarks and down-type with down-type, thus, does not

change flavor and conserves CP symmetry.

2.2 Charged weak interactions and CKM matrix

An interesting property of the charged weak interactions is that the weak eigenstates

of quarks and leptons differ from their mass eigenstates. When a quark couples

to a weak boson, the quark is not in its mass eigenstate. Instead, the quark is a

superposition of the three families of quark mass eigenstates. This is expressed by

the following equation [16, 17]:

⎛⎜⎜⎜⎜⎝
d′

s′

b′

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

d

s

b

⎞⎟⎟⎟⎟⎠ (2.1)

The primed states of the left hand side are the weak eigenstates of down-type quarks

and those on the right hand side are the mass eigenstates. This matrix which mixes

the different flavors of down-type quarks is called the Cabibbo-Kobayashi-Maskawa

(CKM) Matrix. The matrix elements of the CKM matrix are free parameters of the

Standard Model to be determined by experiments. Determination of the magnitude

of the CKM matrix elements |Vcb| and |Vub| is one of the principal goals of the BaBar

experiment.

Figure 2.1 is an example of the charged current weak interaction which is mediated

by a charged weak boson W−. In this case, a bottom quark changes into a charm

quark and produces a electron-neutrino pair. When W interacts with c, the W
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b

c

W-

e-

νe

Figure 2.1: [Quark level weak interaction] Weak interaction via W boson.

couples with the weak eigenstate of the quark in the same family, namely s′

s′ = Vcdd+ Vcss+ Vcbb (2.2)

Since initial quark is b, the interaction picks up only b component of s′. Thus, the

amplitude of this interaction is proportional to Vcb.

CP-transformation changes a charged weak decay of a particle into the decay of its

anti-particle. The amplitude of the decay remains unchanged, by CP-transformation,

if the elements of the CKM matrix are all real numbers. Thus the imaginary phase

of the CKM matrix is responsible for CP violation [18]. In case of decays or mixing

of mesons, their charge asymmetry is strongly suppressed [19]. In order for charge

asymmetry to be observable, for example in B decays, interference between two

different decay processes is necessary.

2.3 Semileptonic decays of B mesons

Hadrons including u, d, s and c quarks have been measured with good precision

because they can be produced at lower center-of-mass energy. In order to get a

complete picture of the three families of the Standard Model, the properties of quarks

b and t need to be understood. This is one of the reasons B-factories were built. B-
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0
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+l

ν

Figure 2.2: [Weak decay of B meson] Weak decay of a B meson.

factories copiously produce pairs of B mesons and we can investigate the properties

of B mesons (or b quarks) through their decays. Decay modes are categorized into

hadronic, leptonic and semileptonic decays.

• Hadronic decays : decays into only hadrons. For example, B0 → D−π+

• Leptonic decays : decays into only leptons. For example, B+ → e+νe

• Semileptonic decays : decays into a combination of hadrons and leptons. For

example, B0 → D−e+νe

Among these three modes, semileptonic decays are the best for measuring CKM

matrix elements |Vcb| and |Vub|.
As described in the previous section, the amplitude of the decay b → c�ν is

proportional to Vcb, which means the decay rate is proportional to |Vcb|2. Since bare

quarks do not exist in nature, the process given in Figure 2.1 is possible only with

hadrons. One example is shown in Figure 2.2. This time, a B+ meson decays into a

D̄0 meson and a �+-neutrino pair. Here � denotes a charged lepton, which is either

electron or muon throughout this document unless otherwise stated.

In the case of semileptonic B → Xc�ν decays (Xc denotes a meson or a me-

son system including one c quark), there are the following decay modes (see also

Appendix A):

• For B+
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– B+ → D̄0�+ν

– B+ → D̄∗0�+ν

– B+ → D̄(∗)π�+ν

This includes

∗ Excited charm mesons : B+ → D̄∗0
0 �

+ν, B+ → D̄0
1�

+ν, B+ → D̄′0
1 �

+ν

and B+ → D̄∗0
2 �

+ν

∗ Non-resonant decays : B+ → D−π+�+ν, B+ → D̄0π0�+ν, B+ →
D∗−π+�+ν and B+ → D̄∗0π0�+ν

– B+ → D̄(∗)ππ�+ν

– B+ → D
(∗)−
s K(∗)+�+ν

• For B0

– B0 → D−�+ν

– B0 → D∗−�+ν

– B+ → D̄(∗)π�+ν

This includes

∗ Excited charm mesons : B0 → D∗−
0 �+ν, B0 → D−

1 �
+ν, B0 → D′−

1 �
+ν

and B0 → D∗−
2 �+ν

∗ Non-resonant decays : B0 → D−π+�+ν, B0 → D̄0π0�+ν, B0 →
D∗−π+�+ν and B0 → D̄∗0π0�+ν

– B0 → D̄(∗)ππ�+ν

– B0 → D
(∗)−
s K̄(∗)0�+ν

The D∗
0, D1, D

′
1 and D∗

2 are called D∗∗ as a whole. These D∗ and D∗∗ are excited

charm mesons. The D meson is spin zero whereas the the spin of D∗ meson is 1. The

D∗∗ have 1 unit of orbital angular momentum (see Appendix B). The D∗ and D∗∗
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decay into either D0 or D+ plus some pions (see Appendix A). Since D∗ and D∗∗

are exited states, they have the same quark content as D. Thus, for example, the

B+ → D̄0
1�

+ν decay diagram is just like Figure 2.2. The D+
s meson consists of c and s̄

quarks and does not decay into D0 or D+. The B → D(∗)ππ�ν and B → D
(∗)
s K(∗)�ν

modes have never been measured.

2.4 Heavy Quark Effective Theory (HQET) and decay rates

For a free quark, as shown in Figure 2.1, it is possible to calculate decay rates [12].

The amplitude is given by

M = −iGF√
2
VcbL

µHµ (2.3)

where GF is the Fermi constant. The amplitude is proportional to Vcb. Here, Lµ is

called the leptonic current because it expresses the flow of weak hypercharge from νe

to e−. Hµ is the quark current in this example because it represents the flow from b

to c. These currents have Lorentz index µ because the amplitude is expressed in a

Lorentz invariant form. Since we are dealing with relativistic velocities, the Lorentz

invariant form is more convenient than other forms.

The leptonic current can be written in terms of Dirac spinors of the charged lepton

ul and the neutrino vν

Lµ = ūlγ
µ(1 − γ5)vν (2.4)

where γµ and γ5 are the 4-dimensional Dirac gamma matrices. The quark current

Hµ can be written in terms of quark spinors b and c

Hµ = c̄γµ(1 − γ5)b (2.5)

There is no complication and we can calculate the decay rates.

However in reality, there are no bare quarks, and b and c quarks are confined

inside of hadrons B and D̄ as shown in Figure 2.2. This complicates the decay
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process because it is possible to have interactions between u and b̄ quarks and so

on. These interactions are strong interactions and cannot be calculated from first

principles in the Standard Model. In reactions involving momentum transfers that

are large compared to the QCD scale, Λ � 0.5 GeV, the strong forces between quarks

are not so strong and their cross sections can be calculated perturbatively, but this

does not apply in the present case. Now, Hµ is not a simple quark current but a

complicated hadronic current. It is written in the following form

Hµ =< D|c̄γµ(1 − γ5)b|B >=< D|V µ|B > − < D|Aµ|B > (2.6)

where

V µ = c̄γµb (vector current)

Aµ = c̄γµγ5b (axial-vector current)
(2.7)

These < D| and |B > include the complication. Since we cannot easily calculate

the matrix elements < D|V µ|B > and < D|Aµ|B >, we express them in terms of

unknown functions called form factors. For example, for B → D�ν decays, the matrix

elements are given by

< D(p′)|V µ|B(p) >= f+(p+ p′)µ + f−(p− p′)µ (2.8)

< D(p′)|Aµ|B(p) >= 0 (2.9)

where f+ and f− are form factors. This means that we push complications into form

factors and express decay rates using form factors. Then we can concentrate on how

to calculate form factors.

Since we cannot calculate form factors from first principles, we need models or

extra symmetries to calculate them. One successful method is to use Heavy Quark

Effective Theory (HQET) [20, 21]. This theory can be applied to mesons consisting
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of a heavy quark, Q, and a light quark, q. Since the mass of c and b quarks are much

heavier than u and d quarks (Table 2.2), the decays involving D and B mesons are

ideal places to apply this theory. This theory uses extra symmetries [20] that are

exact in the limit of infinitely heavy quark mass :

• Heavy quark flavor symmetry

The dynamics is unchanged under the exchange of heavy quark flavors.

• Heavy quark spin symmetry

The dynamics is unchanged under arbitrary transformations on the spin of the

heavy quark.

The exchange of heavy quark flavors means, for example, an exchange of a b quark

by a c quark. One important consequence of the Heavy Quark Symmetry on decay

amplitudes is the prediction of the existence of a single and universal form factor,

which is called the Isgur-Wise Function [21, 22]. Since mQ < ∞, these are only

approximate symmetries. HQET provides us with corrections to the heavy quark

limit in a systematic way.

In the following sections, we give the decay rate formulae of the two major decay

modes B → D�ν and B → D∗�ν based on HQET [21, 22]. B → D∗∗�ν decay rates

are given in Appendix G.

2.4.1 B → D�ν

The differential decay rate is given by

dΓ(B → D�ν)

dw
=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)3/2JD(w) (2.10)

where

JD(w) = [(1 + r)h+ − (1 − r)h−]2 (2.11)
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w is the velocity transfer defined by

w ≡ vB · vD (2.12)

where vB and vD are 4-velocities of B and D mesons. w can be understood as the

relativistic boost of the D in the B rest frame. w is Lorentz invariant and linearly

related to the momentum transfer q2 :

w =
m2

B +m2
D − q2

2mBmD

(2.13)

More details are in Appendix E. r is the mass ratio

r =
mD

mB
(2.14)

In heavy quark limit, the form factors h+(w) and h−(w) are

h+(w) = ξ(w), h−(w) = 0 (2.15)

where ξ(w) is the Isgur-Wise Function and can be expanded in the powers of (w− 1)

because 0 ≤ (w − 1) < 0.6

ξ(w) = ξ(1)[1 − ρ2
D(w − 1) + ...] (2.16)

where ρ2
D is the form factor slope. This form factor slope is one of the parameters

we try to determine in our analysis. h+(1) = ξ(1) can be calculated by the Lattice

QCD [23].

Caprini, Lellouch and Neubert proposed a better way to parametrize the Isgur-

Wise Function [24]. They include higher order in the (w − 1) expansion and relate

the curvature and slope using unitarity bounds of the decay amplitude. Thus, h+(w)
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Figure 2.3: [B → D∗�ν decay geometry] Geometry of B → D∗�ν decays.

can be expressed by one parameter ρ2
D that includes higher order terms :

h+(z) = h+(1)[1 − 8ρ2
Dz + (51ρ2

D − 10)z2 − (252ρ2
D − 84)z3 + ...] (2.17)

where

z =

√
w + 1 −√

2√
w + 1 +

√
2

(2.18)

We call this the CLN parametrization. In the CLN parametrization, h+(w) is ex-

panded in powers of z instead of (w− 1). Since 0 ≤ z < 0.06, higher order terms are

more suppressed.

2.4.2 B → D∗�ν

The kinematic variables in B → D∗�ν decays are shown in Figure 2.3.

• θ� : Angle between the directions of “the � in the W rest frame” and “the W

in the B rest frame”.

• θV : Angle between the directions of “the D in the D∗ rest frame” and “the D∗

in the B rest frame”.

• χ : Azimuthal angle between the planes formed by “W -� system” and “D∗−D
system”.
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The differential decay rate is given by

dΓ(B→D∗�ν)
dwdcosθV dcosθ�dχ

=
3G2

F

4(4π)4
|Vcb|2mBm

2
D∗

√
w2 − 1(1 − 2wr + r2)×

[(1 − cosθ�)
2sin2θV |H+(w)|2

+(1 + cosθ�)
2sin2θV |H−(w)|2

+4sin2θ�cos2θV |H0(w)|2

−4sinθ�(1 − cosθ�)sinθV cosθV cosχH+(w)H0(w)

+4sinθ�(1 + cosθ�)sinθV cosθV cosχH−(w)H0(w)

−2sin2θ�sin
2θV cos2χH+(w)H−(w)]

where Hi(w) are called the helicity form factors. These form factors are related to

another set of form factors, hV (w), hA1(w), hA2(w) and hA3(w), as follows.

Hi = −mB
R(1 − r2)(w + 1)

2
√

1 − 2wr + r2
hA1(w)H̃i(w) (2.19)

where H̃i(w) are given by

H̃±(w) =
√

1−2wr+r2

1−r

(
1 ∓

√
w−1
w+1

R1(w)
)

H̃0(w) = 1 + w−1
1−r

(1 − R2(w))
(2.20)

where R1(w) and R2(w) are the form factor ratios.

R1(w) =
hV (w)

hA1(w)
, R2(w) =

hA3(w) + rhA2(w)

hA1(w)
(2.21)

and

r =
m∗

D

mB
, R =

2
√
mBm∗

D

mB +m∗
D

(2.22)
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In the first approximation, R1(w) and R2(w) has no w dependence

R1(w) = R1

R2(w) = R2

(2.23)

and hA1(w) is given by

hA1(w) = hA1(1)
[
1 − ρ2(w − 1) + ...

]
(2.24)

where ρ2 is the form factor slope. These ρ2, R1 and R2 are the parameters we try to

determine in the fit.

With the CLN parametrization [24]

R1(w) = R1 − 0.12(w − 1) + 0.05(w − 1)2

R2(w) = R2 + 0.11(w − 1) − 0.06(w − 1)2

hA1(w) = hA1(1) [1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3]

(2.25)

It is convenient to use integrated form of the differential decay rate in some calcu-

lations (see section 5.5). If we integrate the differential decay rate over angles, we

get

dΓ(B → D∗�ν)
dw

=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2JWD(R1, R2, ρ

2) (2.26)

where

JWD(R1, R2, ρ
2) = (w + 1)2[hA1]

2(h̃2
+ + h̃2

− + h̃2
0) (2.27)

and

h̃±(w) ≡ (1 − r)H̃±(w) =
√

1 − 2wr + r2
(
1 ∓

√
w−1
w+1

R1(w)
)

h̃0(w) ≡ (1 − r)H̃0(w) = (1 − r) + (w − 1) (1 − R2(w))

= (w − r) − (w − 1)R2(w)

(2.28)
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2.5 Isospin symmetry

Isospin symmetry is an approximate symmetry due to the similar mass of u and d

quarks. The strong interaction couples only to the color charge and is independent

of the electric charge or flavor of the quarks. Thus, the quarks with the same mass

and color have strong interactions of identical strength. This is the basis of isospin

symmetry. Isospin has the same mathematical structure as spin or angular momen-

tum. For example, when its magnitude is 1 its z-component can be either -1, 0, or

+1. The u and d quarks are treated as a doublet and isospin is assigned such that

u : |1/2,+1/2 >, d : |1/2,−1/2 > (2.29)

where numbers are |magnitude, z-component>. The isospin of s, c, b and t quarks

are all zero.

The isospin conservation of semileptonic B decays is not obvious because those

decays are weak decays. Weak interactions are flavor-dependent and isospin is not

necessarily conserved. We take B0 → D∗−�+ν and B0 → D∗−�+ν decays as an

example to consider isospin symmetry. In Figure 2.2, if u is replaced by d, the

diagram represents the B0 → D∗−�+ν decay. From heavy quark symmetry, the weak

decay part b̄ → c̄ occurs independently. Thus, the weak decay does not distinguish

between the two decay amplitudes. Since the remainder of the process involves strong

interactions, the corrections to the picture of the weak decay of a free heavy quark

conserve isospin.

We can determine the isospin of hadrons from their constituent quarks, for exam-

ple,

B+(ub̄) : |1/2,+1/2 >, D̄0(uc̄) : |1/2,+1/2 >

B0(db̄) : |1/2,−1/2 >, D−(dc̄) : |1/2,−1/2 >
(2.30)

Thus, from isospin symmetry, the partial decay rates of the two decays B+ → D̄0�+ν
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and B0 → D−�+ν are the same :

Γ(B+ → D̄0�+ν) = Γ(B0 → D−�+ν) (2.31)

However, since total decay rates of B+ and B0 are different [10], branching fractions

of the above two decay modes are different because

Branching fraction =
Partial rate

Total rate
(2.32)

As total decay rates are inverse of lifetimes, the ratio of the branching fractions is

given by

B(B+ → D̄∗0�+ν)
B(B0 → D∗−�+ν)

=
Γ(B+ → D∗�ν)τB+

Γ(B0 → D∗�ν)τB0

=
τB+

τB0

(2.33)

where τB+ and τB0 are the lifetimes of B+ and B0. More calculations of isospin are

given in Appendix C.
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Chapter 3

BaBar data and Event selection

3.1 BaBar data

We use a data sample of approximately 230 million BB̄-pairs, collected by the BaBar

detector. This corresponds to an integrated luminosity of 207 fb−1. The BB̄-pairs

are produced from the decay of the Υ(4S) resonance created by the asymmetric e+e−

collider, PEP-II [25], at the Stanford Linear Accelerator Center (SLAC). We also use

21.5 fb−1 of off-resonance data collected 40 MeV below the Υ(4S) resonance. The

off-resonance data are used to subtract the background from the process e+e− → f f̄ ,

where f is a lighter quark (u, d, s or c) or a charged lepton (e, µ or τ). We also use

Monte Carlo (MC) simulated events. In BaBar, the package EvtGen [26] is used to

generate MC events. The GEANT4 software [31] is used to simulate the response

of the BaBar detector. The generated particles are tracked through the detector

material where they lose energy, interact with detector materials and leave signals in

the active detector elements. To reconstruct particles from the detector signals, the

same program is used for both BaBar data and simulated events.

The ISGW2 model [27, 28] is used to generate B → D�ν and B → D∗∗�ν events.

These are re-weighted to HQET-inspired models as described in section 5.5. The

Goity-Roberts model [29, 30] is used to simulate non-resonant B → D(∗)π�ν decays.

ForB → D∗�ν events, the HQET-based model, as described in chapter 2, is employed.
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3.2 BaBar detector

A detailed description of the BaBar detector can be found elsewhere [32]. Here, we

give a brief summary relevant to our analysis. In the following a cylindrical coordinate

system is used. The z-axis coincides with beam axis and the origin with the beam

collision point.

The BaBar detector consists of different components. From inside to outside :

• Silicon Vertex Tracker (SVT)

SVT is composed of five layers of double-sided silicon strip detectors. Each

layer has two sides : one with strips parallel to the beam axis (to measure φ

coordinate) and one with strips perpendicular to the beam axis (to measure the

z coordinate).

• Drift Chamber (DCH)

DCH is composed of 40 layers of small hexagonal cells providing position and

ionization loss (dE/dx) measurements for charged particles. The charged par-

ticles, moving through the helium-isobtane (He, C4H10) gas in the DCH, ionize

the gas. The electrons produced by the ionization drift to the anode wires be-

cause of the high voltage (usually 1930 V) between the wires. The drift time

determines the distance from the anode and the total charge gives dE/dx.

SVT and DCH are both charged particle tracking systems which can measure

the z coordinate and azimuthal angle θ. They are in a 1.5 T axial magnetic

field. We can determine the momentum of charged particles from the curvature

of their tracks.

• Cerenkov Detector (Detector of Internally Reflected Cerenkov light, DIRC)

The silica bars of DIRC produce Cerenkov light from charged particles. DIRC

can measure the angle of the Cerenkov cone (Cerenkov angle). The Cerenkov
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light is produced when the speed of the charged particle v is larger than the

speed of the light in the silica bar c/n, where n is the index of refraction of the

silica. We can determine the speed of the charged particle from the Cerenkov

angle ΘC using the following relation :

v cos ΘC =
c

n
(3.1)

This speed combined with the momentum from the tracking systems gives the

mass of the charged particle.

• Electromagnetic Calorimeter (EMC)

EMC is a finely segmented array of thallium-doped cesium iodide (CsI(Tl)) crys-

tals. EMC can measure the energy of electrons and photons (γ). An electron

or a photon, which entered a crystal in the EMC, produces an electromagnetic

shower in the crystal. The scintillation light produced by the shower is collected

by the silicon photo-diode. The number of collected photons is proportional to

the energy deposited in the crystal.

• Instrumented Flux return (IFR)

IFR is designed to identify muons and to detect neutral hadrons such as K0

and neutrons.

With the combination of above components, we can identify particles with relatively

long lifetime such as electrons, muons, photons, pions (π), kaons (K), and protons. As

an example, Figure 3.1 shows how dE/dx can distinguish different types of particles.

We can also measure particle energies and momenta. The resolution in transverse

momentum of charged particles is 0.7 % at 2 GeV. The photon energy resolution is

3 % at 1 GeV.
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Figure 3.1: [dE/dx vs momentum] dE/dx vs momentum plot showing the ability of
particle identification.

3.3 Signal and background events

The B → Xc�ν decays are what we are interested in (see section 2.3). We call them

signal. To access these events, we reconstruct a charged lepton and a D meson (D0

or D+) and form a D� candidate. Since neutrinos escape undetected, we cannot fully

reconstruct B mesons. Only one true D�-pair can be produced from one B meson.

We do not explicitly reconstruct D∗ or D∗∗. However we can access those decay

modes which include D∗ or D∗∗ because D∗ and D∗∗ eventually decay into either D0

or D+ (see Appendix A). D0 and D+ are reconstructed from two and three charged

tracks, respectively, using the decay modes :

• D0 → K−π+

• D+ → K−π+π+
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The masses of reconstructed D0(K−π+) and D+(K−π+π+) are distributed as shown

in Figure 3.2. The OnPeak data events are the events produced by the colliding beam

at the energy of Υ(4S) resonance. These events include

• BB̄ events, because Υ(4S) decays into a BB̄-pair with almost 100% probability.

We can simulate these BB̄ events with Monte Carlo (MC) simulation.

• uū, dd̄, ss̄, and cc̄ events which do not come from Υ(4S) resonance.

These events are called qq̄ or continuum events as a whole. We can estimate

the amount of qq̄ events from OffPeak data which is taken 40 MeV below the

resonance. OffPeak data does not include BB̄ events since this is below the

energy threshold for BB̄ production.

Typical cross sections at Υ(4S) energy are 1.05 nb for BB̄ events and 3.39 nb for qq̄

events. In Figure 3.2 (left), black points are OnPeak data, colored histograms are

produced from BB̄ MC and the dark gray histogram at the bottom is OffPeak data.

This shows that OnPeak data consists of BB̄ events and qq̄ events. We subtract

continuum events using OffPeak data. The continuum-subtracted plots are shown on

the right hand side.

3.3.1 Signal events

Signal events are categorized into four components :

• B → D�ν events (Red histograms in Figure 3.2 and 3.3).

• B → D∗�ν events (Green histograms in Figure 3.2 and 3.3).

• B → D(∗)π�ν events (Blue histograms in Figure 3.2 and 3.3).

This includes B → D∗∗�ν and non-resonant B → D(∗)π�ν events

• B → D(∗)ππ�ν events (Magenta histograms in Figure 3.3).

This includes B → Xc�ν events other than B → D�ν, B → D∗�ν and B →
D(∗)π�ν events.
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Figure 3.2: [D mass distribution] Typical D mass distributions before (left) and
after (right) continuum subtraction. The top is D0 and the bottom is D+. Black points
are OnPeak (or OnPeak - OffPeak) data. Red is B → D�ν, green is B → D∗�ν, blue is
B → D(∗)π�ν, the rest is background. Dark brown is Uncorrelated Direct Lepton, light
brown is Uncorrelated Cascade Lepton, dark red is Correlated Cascade Lepton, blue gray
is Fake Lepton, light gray is Combinatorial, and dark gray is OffPeak data. B → D(∗)ππ�ν
component is not included in these plots.
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name mass width spin

X 2.61 0.3 0
X∗ 2.61 0.3 1
Y 2.87 0.1 0
Y ∗ 2.87 0.1 1

Table 3.1: [Xc states] Xc states used to generate B → D(∗)ππ�ν events.

Not much is known about B → D(∗)ππ�ν events and these events were not included

in our original MC. However it is evident that these events should exist [10,11]. Thus,

we generated events in this category using an ad-hoc model. We assumed four broad

intermediate Xc states, namely X, X∗, Y and Y ∗ states, as listed in Table 3.1.

• These states are treated as heavier D or D∗ according to the spin. The mass

and spin of the Xc state determine, for example, the lepton momentum and D

momentum spectrum.

• The X and X∗ states are decayed into D or D∗ (with equal branching fractions)

and two pions according to phase space.

• The Y and Y ∗ states are decayed as two-body D(∗)ρ states, and ρ subsequently

decays to two pions. The Y (∗) mass is chosen to be just above the threshold for

this decay.

3.3.2 BB̄ background events

BB̄ events also produce backgrounds. BB̄ background events are categorized into

five different types.

• Uncorrelated Direct Lepton (Dark brown histograms in Figure 3.2 and 3.3.)

Uncorrelated means D and � come from different B. The � comes directly from

a B.
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We have this kind of background because we have two B mesons in one event.

The most typical example of this type of background is

– B+ → D̄0�+ν

– B− → D∗0D∗−K0 with D∗− → D−π0 or D∗− → D−γ

These �+ from B+ and D− from B− form a D� candidate. Note that in order

for a B meson to produce a D meson (in addition to usual D̄ meson), the W

in the Figure 2.2 has to produce cq̄ pair (instead of �̄ν pair).

Another typical example is B0B̄0 mixing.

– B0 → X−�+ν

– B̄0 → B0 → D−X ′+

These �+ from B0 and D− from B̄0 form a D� candidate.

• Uncorrelated Cascade Lepton (Light brown histograms in Figure 3.2 and 3.3.)

D and � came from different B, and cascade means � does not directly come

from B. In most of the cases, the � come from a D(∗) meson which is a decay

product of one B.

The most typical example is

– B+ → D̄0X1

– B− → D0X2 with D0 → K−�+ν

These D̄0 from B+ and �+ from B−(D0) form a D� candidate.

• Correlated Cascade Lepton (Dark red histograms in Figure 3.2 and 3.3.)

Correlated means D and � come from the same B. But, � does not directly

come from B.

A typical example is
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– B+ → D̄0D∗0K+ with D̄0 → K+�−ν̄ and D∗0 → D0π0

These �− and D0 form a D� candidate.

Another typical example is

– B+ → D̄0τ+ν̄ with τ+ → �+ν̄µντ

These D̄0 and �+ form a D� candidate.

• Fake Lepton (Blue gray histograms in Figure 3.2 and 3.3.)

The lepton in a D� candidate is a mis-identified K, π or p.

90 % of mis-identification is between µ and π.

• Combinatorial (Light gray histograms in Figure 3.2.)

The D in a D� candidate is not correctly reconstructed.

Typical mis-reconstructions are that the kaon and the pion do not come from

same D or not directly come from D. In our analysis, D0 has much less com-

binatorial background than D+ because D0 is reconstructed from two particles

(one K and one π) whereas D+ is reconstructed from three particles (one K and

two π) as described above. The combinatorial background can be statistically

removed as described in the next section.

3.3.3 D mass sideband subtraction

As can be seen in Figure 3.2, the combinatorial background does not have a peak

in the D mass distribution. Thus we can remove combinatorial BB̄ background by

subtracting the number of candidate with invariant masses in the D mass sidebands.

We define the D mass peak region and sidebands as follows :

• D0 mass

peak : 1.840 - 1.888 GeV

side bands : 1.816 - 1.840 and 1.888 - 1.912 GeV
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• D+ mass

peak : 1.845 - 1.893 GeV

side bands : 1.821 - 1.845 and 1.893 - 1.917 GeV

We count the number of D� candidates in both peak, Npeak and sidebands, Nside.

Then subtract Nside from Npeak to remove the combinatorial background. Figure 3.3

shows a typical lepton momentum and D momentum distribution after event selec-

tion and D mass sideband subtraction. The correlated cascade lepton, the fake lepton

and the combinatorial background are too small to be visible. Based on MC stud-

ies, approximately 4.6 % of true D� candidates enter the sidebands. The sideband

subtraction, therefore, slightly lowers the signal efficiency.

3.4 Event selection

To reduce backgrounds, we apply a few selection criteria. We consider the statistical

uncertainty on the signal

σS

S
=

Statistical uncertainty on S

Signal yield
(3.2)

to optimize our cuts. This analysis is systematics limited; thus, obtaining minimum

σS/S is not always the optimum choice. In many cases we chose a looser cut than

would be obtained from the minimum σS/S point.

3.4.1 BToDlnu skim

First, the collected data is precessed to select only events with D� candidates. This

process is done centrally within the BaBar collaboration and the produced data set

is called the BToDlnu skim. In this section, we summarize the selection criteria of

the BToDlnu skim.

Good quality charged tracks are used to reconstruct D and �. The good quality

charged tracks must satisfy the following conditions :
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Figure 3.3: [p� and pD spectrum] Lepton momentum (left) and D momentum (right)
spectrum after D mass sideband subtraction. The top is D0 and the bottom is D+.
Black points are OnPeak - OffPeak data. Red is B → D�ν, green is B → D∗�ν, blue
is B → D(∗)π�ν, magenta is B → D(∗)ππ�ν, and the rest is background. Dark brown
is Uncorrelated Direct Lepton, light brown is Uncorrelated Cascade Lepton, dark red is
Correlated Cascade Lepton, blue gray is Fake Lepton, and light gray is Combinatorial.
Correlated Cascade Lepton, Fake Lepton and Combinatorial are tiny after event selection
and D mass sideband subtraction.
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• Momentum < 10 GeV

• Distance from beam line < 1.5 cm

• Distance from the collision point along the beam line < 10 cm

• Number of hits in DCH ≥ 12

D0 candidates are reconstructed in 4 modes: D0 → K−π+, D0 → K−π+π+π−,

D0 → K−π+π0 and D0 → K̄0π+π−, and D+ candidates are reconstructed in 2

modes: D+ → K−π+π+ and D+ → K̄0π+. Since statistical errors are not a limiting

uncertainty in our analysis, we select the cleanest modes only; we use only D0 →
K−π+ and D+ → K−π+π+ modes.

For K− tracks in the skim,

• The KLHNotPion selector is used to identify K− to reconstruct D+

This LH stands for likelihood. A selection cut is applied based on the likelihood

calculated by comparing measured dE/dx with expected values assuming the

particle is a kaon. A very loose cut is chosen.

We apply the same KLHNotPion selector to identify the K− to reconstruct D0 as

described in section 3.4.2.

Electrons and muons are selected using the following Particle Identification (PID)

selectors :

• The PidLHElectron selector for electrons

A selection cut is applied based on a likelihood. First, a likelihood function is

constructed using the deposited energy and the shower shape in the EMC and

the Cerenkov angle in the DIRC. Then the final likelihood is computed from

the likelihood function and a likelihood of the measured dE/dx. A tight cut is

adopted.
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• The muNNTight selector for muons

This NN stands for Neural Network. Instead of making simple cuts on variables,

a neural network is used as a multi-variable discriminator. Input variables are

the energy deposited in the EMC, the number of hit layers, the track χ2 and

the multiplicity of hit strips per layer in the IFR and the interaction length

traversed in the BaBar detector. A tight cut is also adopted for muon.

The efficiency (fake rate) of the PidLHElectron selector is 94 % (1 %), and the effi-

ciency (fake rate) of the muNNTight selector is 70 % (2 %) for tracks with momentum

greater than 1.4 GeV.

The following cuts are also applied

• Lepton momentum cut

0.8 < p∗� < 3.0 GeV, where p∗� is the lepton momentum in the Υ(4S) rest frame.

• Lepton and kaon charge correlation cut

The kaon and lepton must have the same sign of charge. See Appendix A.

3.4.2 Kaon Selection

As described above, in the BToDlnu skim, the KLHNotPion selector is used only

in D+ reconstruction. We apply the KLHNotPion selector to D0 reconstruction as

well to reduce kaon mis-identification. The uncertainties on the signal yields before

and after the KLHNotPion requirement are given in Table 3.2. The uncertainty on

the signal yield is reduced by 41 %. There is no change in D+ mode because the

KLHNotPion selector was already applied in the BToDlnu skim.

3.4.3 Vertexing

A vertex is the decay point of a particle. For example, in the decay D0 → K−π+, the

K− and π+ originate from the D0 decay point. Thus, the reconstructed trajectories

of the K− and π+ are expected to intersect at a point corresponding to the D0 decay
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vertex. We calculate a χ2 based on the assumption. No vertexing cut is made in the

BToDlnu skim. We apply the TreeFitter algorithm [33] to calculate the χ2 of the

D and B decay vertices. By B vertex, we mean the vertex of the D� combination.

We cut on the probability value, P (χ2, ndf), calculated by the χ2 and the number of

degrees of freedom (ndf) of the fitting. We chose :

PD(χ2, ndf) > 0.001, PB(χ2, ndf) > 0.01, (3.3)

These cuts reduce the uncertainties on the signal yields by 19 % for D0 mode and by

22 % for D+ mode, as listed in Table 3.2.

3.4.4 Thrust cut

BB̄ events are isotropic, since they are produced just above threshold and are spin-

less, while other qq̄ events, which are produced far above threshold, tend to result

in back to back jets of particles in the center-of-mass (CM) frame. Thus, we can

separate qq̄ events from BB̄ events using the event topology. A thrust axis is the

axis that maximizes the sum of the momentum components of particles along the

axis. We calculate two thrust axes : one for the D� candidate and the other for

the “non-D�” particles in each event. Here, “non-D�” particles means all charged

tracks and calorimeter energy deposits other than the ones used to reconstruct the

D� candidate. For signal events, the D� is presumed to come from one B in the

event; thus, the non-D� particles should correspond to the other B in the event.

However, since we do not reconstruct D∗ or D∗∗, pions from D∗ or D∗∗ on D� side

are included in non-D� particles. Nevertheless we can achieve a good separation

between BB̄ events and qq̄ events. We calculate | cos θDl−nonDl|, which is the cosine

of the angle between thrust axes of the D� candidate and the non-D� particles. The

distribution is shown in Figure 3.4. It is almost flat for signal events but peaked at

| cos θDl−nonDl| = 1 for qq̄ events, as expected.
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Figure 3.4: [| cos θDl−nonDl| distribution] | cos θDl−nonDl| plot for D0 (left) and D+

(right). In the top plot, red is B → D�ν, green is B → D∗�ν and yellow is B → D(∗)π�ν
signals, and brown is BB̄ backgrounds. In the bottom plot, magenta is cc̄, light blue is qq̄
(q = u, d or s) and gray is τ+τ−. These plots are before event selection cuts and D mass
sideband subtraction.

To optimize the cut, we calculate the uncertainty on signal. Our choice is

| cos θDl−nonDl| < 0.92 (3.4)

With this cut, we can reduce the uncertainties on the signal yields by 18 % for D0

and by 15 % for D+, as shown in Table 3.2.

3.4.5 Kinematic cuts to further reduce background.

Monte Carlo simulation did not describe the background distribution well. Trial

fits were performed but they resulted in producing a poor fit quality. Further kine-
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matic cuts were found to be necessary to reduce the uncertainties from backgrounds.

Since most backgrounds are in the low lepton momentum and D momentum regions

(Figure 3.3), we apply momentum cuts :

• p∗� > 1.2 GeV

• p∗D > 0.8 GeV

where p∗� is the lepton momentum and p∗D is the D momentum in the CM frame. We

also looked at cos θB−Dl, which is defined by

cos ΘB−Dl =
2EBEDl −m2

B −m2
Dl

2|pB||pDl|
(3.5)

where EB, mB and pB (EDl, mDl and pDl) are the energy, mass and momentum of B

(D� pair), respectively. The B energy and momentum are calculated from the CM

energy
√
s, as follows

EB =
√
s/2, |pB| =

√
s/4 −m2

B (3.6)

where B0 mass is used for mB (see Appendix D for more details). cos θB−Dl is plotted

in Figure 3.5. As can be seen from the plot, we cut on

• −2 < cos θB−Dl < 1.1

to reduce backgrounds. The upper bound is set to 1.1 to avoid the sharp edge at

cos θB−Dl = 1 for B → D�ν decays, which is smeared by the resolution. These three

kinematic cuts are chosen to select a region dominated by signal decays and to reduce

our sensitivity to uncertainties in the modeling of the background processes.

3.4.6 Summary of event selection cuts

Table 3.2 summarizes the cuts we applied, the uncertainty on signal, σS/S, and the

number of selected signal candidates in the D mass peak region, NSig
peak. The selection
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Figure 3.5: [cos θB−Dl spectrum] cos θB−Dl after D mass sideband subtraction. The top
is D0 and the bottom is D+. Black points are OnPeak - OffPeak data. Red is B → D�ν,
green is B → D∗�ν, blue is B → D(∗)π�ν, magenta is B → D(∗)ππ�ν, and the rest
is background. Dark brown is Uncorrelated Direct Lepton, light brown is Uncorrelated
Cascade Lepton, dark red is Correlated Cascade Lepton, blue gray is Fake Lepton, and
light gray is Combinatorial. Correlated Cascade Lepton, Fake Lepton and Combinatorial
are tiny after event selection and D mass sideband subtraction.
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D0 D+

cuts σS

S
NSig

peak
σS

S
NSig

peak

BToDlnu skim 0.01152 1.0639 × 106 0.01538 628185
KLHNotPion selector 0.00657 1.0349 × 106 0.01538 628170
PD(χ2, ndf) > 0.001
PB(χ2, ndf) > 0.01 0.00525 974632 0.01174 568799
| cos θDl−nonDl| < 0.92 0.00428 882038 0.00992 515792

Kinematic cuts 0.00264 492955 0.00660 279686

Table 3.2: [Event selection cuts] Summary of event selection cuts.

reduces the uncertainties on the signal yields by 77 % for D0 and by 57 % for D+.

We also lose 54 % and 55 % of signal candidates with these selection cuts. Tables 3.3

and 3.4 are cut-flow tables for D0 and D+ respectively. (OnPeak - OffPeak) data and

BB̄ MC are compared in these tables. The relative efficiencies show good agreement

between data and MC. The efficiency corrections described in section 6.3.3 are not

applied.

Figure 3.6 compares the D mass distributions before and after selection cuts. We

can see significant improvement in data-MC agreement. After all selection cuts, there

is still a small disagreement. However, since the data-MC difference for combinatorial

background is flat throughout the D mass region, this difference disappears after D

mass sideband subtraction. We also took wide enough peak regions to cover peak

position differences.



40

OnPeak - OffPeak Yield Efficiency Cumulative efficiency

BToDlnu skim 1.3388 × 106

KLHNotPion selector 1.3410 × 106 1.00 1.00
PD(χ2, ndf) > 0.001
PB(χ2, ndf) > 0.01 1.1961 × 106 0.89 0.89
| cos θDl−nonDl| < 0.92 1.0651 × 106 0.89 0.78

Kinematic cuts 479296 0.45 0.36

BB̄ MC Yield Efficiency Cumulative efficiency

BToDlnu skim 1.4679 × 106

KLHNotPion selector 1.4449 × 106 0.99 0.99
PD(χ2, ndf) > 0.001
PB(χ2, ndf) > 0.01 1.3204 × 106 0.92 0.90
| cos θDl−nonDl| < 0.92 1.1789 × 106 0.89 0.80

Kinematic cuts 502995 0.43 0.34

Table 3.3: [Cut-flow Table, D0] The cut-flow table for D0. The yield is the number
of candidates after D mass sideband subtraction. The efficiency corrections described in
section 6.3.3 are not applied.

OnPeak - OffPeak Yield Efficiency Cumulative efficiency

BToDlnu skim 825616
KLHNotPion selector 825625 1.00 1.00
PD(χ2, ndf) > 0.001
PB(χ2, ndf) > 0.01 700745 0.85 0.85
| cos θDl−nonDl| < 0.92 621453 0.89 0.75

Kinematic cuts 266127 0.43 0.32

BB̄ MC Yield Efficiency Cumulative efficiency

BToDlnu skim 1.0061 × 106

KLHNotPion selector 1.0061 × 106 1.00 1.00
PD(χ2, ndf) > 0.001
PB(χ2, ndf) > 0.01 870188 0.85 0.85
| cos θDl−nonDl| < 0.92 766995 0.88 0.76

Kinematic cuts 294623 0.38 0.29

Table 3.4: [Cut-flow Table, D+] The cut-flow table for D+. The yield is the number
of candidates after D mass sideband subtraction. The efficiency corrections described in
section 6.3.3 are not applied.
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Figure 3.6: [D mass distributions before and after event selection] D mass
distributions before (left) and after (right) applying selection cuts. The top two rows are
for D0 and the bottom two are for D+. The colors of the histograms are same as others.
Data - MC difference is also plotted at the bottom of each plot.
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Chapter 4

Outline of the analysis method

Before going into the actual fitting procedure (section 6), we give a simplified example

to illustrate the fundamentals of the fitting method. For the sake of the example we

will suppose that semileptonic B → Xc�ν decays have only two signal decay modes

S1 and S2 with branching fractions BF1 and BF2, and there is only one type of BB̄

background B1.

4.1 3-dimensional (3D) binned histogram making

First we make 3-dimensional (3D) binned histograms of OnPeak data, OffPeak data,

S1, S2 and B1. The histograms of S1, S2 and B1 are made from BB̄ MC using MC

truth information. We denote the number of candidates in the i-th bin for OnPeak

data by NOnPeak
i , for OffPeak data by NOffPeak

i , for the two signals by NS1
i and NS2

i ,

and for the one background by NB1
i . These numbers are

• After event selection cuts.

• After D mass sideband subtraction.

• The OffPeak data and BB̄ MC are scaled to the luminosity of the OnPeak

data.

We then perform continuum (OffPeak) subtraction to get
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• Ndata
i = NOnPeak

i −NOffPeak
i

By 3D we mean that we use three kinematic variables to characterize each decay

mode. We use the following three variables :

• lepton momentum in the CM frame p∗�

• D momentum in the CM frame p∗D

• cos θB−Dl (see section 3.4.5 and Appendix D)

The reason for this choice is the following. In the B → D�ν decays, there are only

three independent kinematic variables. For example, in Figure 2.3, supposing D∗ is

D and does not decay, the independent variables can be the magnitude of lepton

momentum, the magnitude of D momentum and θ� because χ and θV are irrelevant.

The same is true in other decay modes when we reconstruct only D� pairs. We chose

three variables, p∗� , p
∗
D and cos θB−Dl, because this combination is simple, well known

and useful to discriminate among signal decay modes and backgrounds. The shapes

of the histograms for each MC mode are quite different. The projected plots of 3D

histograms onto each variable axis are shown in Figures 3.3 and 3.5. Figure 4.1 shows

the difference in the 3D distribution for each signal and background component in

one bin of cos θB−Dl. We can clearly see the difference.

4.2 MC re-weighting

The input values used to create our fully-simulated MC samples differ from the most

recent values available. There have been new measurements of, for example, the

branching fractions (BF) for certain decays and some form factor parameters. Where

new measurements are available, we updated the MC samples to the new values.

This is done by assigning to each MC event a weight such that the weighted sample

reflects the updated input parameter values. We call this MC re-weighting. Details
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Figure 4.1: [2D projection plots] Projections onto p∗D versus p∗� for D� candidates
that satisfy 0 < cos θB−Dl < 1.1, after sideband subtraction. The shaded boxes have area
proportional to the number of entries. The plots show, (a) B → D�ν, (b) B → D∗�ν,
(c) sum of B → D(∗)π�ν, B → D(∗)ππ�ν and background, and (d) data after OffPeak
subtraction.
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of MC re-weighting are explained in chapter 5. Several aspects of the MC simulation

are modified by re-weighting.

• Background BF

Branching fractions of background processes are updated to new values.

• D(∗,∗∗) decay BF

D(∗,∗∗) decay BFs are updated to new values.

• Form factor (FF)

Form factor parameters are updated to new values and the FF models are

replaced where necessary.

We also correct tracking and PID efficiencies as described in section 6.3.3. Most of

the re-weighting is done during the 3D histogram making process because weights

vary from candidate to candidate. However, some of these weights can be applied in

the fitting process by splitting histograms as described below.

4.3 Fitting

Using the above histograms we form a χ2

χ2 =
∑

i

(Ndata
i −NS1

i −NS2
i −NB1

i )2

(σdata
i )2 + (σS1

i )2 + (σS2
i )2 + (σB1

i )2
(4.1)

where σxx
i are the statistical uncertainties of i-th bin. If BB̄ MC provides a perfect

description of the data, we should have χ2 � (number of bins) because the fluctuation

in a bin is the same size as the statistical uncertainty of the bin and each bin gives

1 as an average.

However, the MC is not perfect. The BF of S1 and S2 in the MC, BFMC
1 and

BFMC
2 , are different from the true values. This difference makes the χ2 larger than
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1. We can adjust the BF difference using coefficients

CS1 =
BF1

BFMC
1

, CS2 =
BF2

BFMC
2

, (4.2)

to NS1
i and NS2

i . The BFMC
1 and BFMC

2 are fixed values, but BF1 and BF2 can be

variables. Then χ2 becomes

χ2 =
∑

i

(Ndata
i − CS1NS1

i − CS2NS2
i −NB1

i )2

(σdata
i )2 + (CS1σS1

i )2 + (CS2σS2
i )2 + (σB1

i )2
(4.3)

If we minimize this χ2 by floating BF1 and BF2, we can determine the branching

fractions BF1 and BF2 which the data favor.

This is how we determine branching fractions in the fit. Next, we explain how to

access form factor (FF) parameters. One way is to remake MC histograms with a

new set of FF parameters. This is what we call FF re-weighting. Suppose the decay

rate of S1 is given by

Γ = a(w) + b(w)c (4.4)

where a and b are functions of the velocity transfer w and c is the FF parameter we

would like to measure. The weight is given by

W =
a(w) + b(w)c

a(w) + b(w)cMC
(4.5)

where cMC is the value used in existing MC. This weight differs candidate by can-

didate because the velocity transfer w varies candidate by candidate. So, we apply

this weight candidate by candidate and count the weighted number of candidates to

make a new histogram. This means, for example, new NS1
i is given by

NS1
i =

∑
k

Wik (4.6)
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where k is the k-th candidate in i-th bin. But this is computationally expensive when

c is a free parameter because the fit code needs to remake the histogram for each

iteration in the minimization of χ2. There is a better way to do the fitting. Instead

of making one histogram for S1 with one weight, we can separate the weight into two

:

W =
a(w)

a(w) + b(w)cMC
+

b(w)

a(w) + b(w)cMC
c ≡W a +W b c (4.7)

to separate out the c, which is what we fit for. Then we make two histograms :

NS1a
i =

∑
k

W a
ik, NS1b

i =
∑

k

W b
ik (4.8)

We can recover full histogram of S1 by

NS1
i = NS1a

i + cNS1b
i (4.9)

with a different value of c. With this approach, the χ2 is given by

χ2 =
∑

i

(Ndata
i − CS1(NS1a

i + cNS1b
i ) − CS2NS2

i −NB1
i )2

(σdata
i )2 + (CS1σS1

i )2 + (CS2σS2
i )2 + (σB1

i )2
(4.10)

where σS1
i can be determined by the similar method as shown in section 6.8. Now, we

can fit for the FF parameter c by minimizing this χ2 without remaking histograms

NS1a
i and NS1b

i at each iteration of the minimization. The actual χ2 we use is a more

complex version of this and is fully described in chapter 6.

4.4 Calculation of G(1)|Vcb| and F(1)|Vcb|
After determining the branching fractions B(B → D�ν) and B(B → D∗�ν), and

form factor parameters ρ2
D, ρ2, R1, and R2 from the fit, we can calculate G(1)|Vcb| and

F(1)|Vcb|. Here we show an outline of the calculation; details are given in Appendix F.
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4.4.1 G(1)|Vcb|

The differential decay rate forB → D�ν decays is given in Equation (2.10). Combined

with the CLN parametrization given in Equation (2.17), the differential decay rate

is given by

dΓ(B → D�ν)

dw

=
G2

Fm
5
B

48π3
r3(w2 − 1)3/2 (1 + r)2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2

× (G(1)|Vcb|)2 (4.11)

Note that G(1) = h+(1). By integrating over w, we get

B(B → D�ν)

τB

=
G2

Fm
5
B

48π3
r3(1 + r)2

∫
(w2 − 1)3/2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2dw

× (G(1)|Vcb|)2 (4.12)

where τB is the lifetime of the B meson. Note that z is a function of w (Equation

(2.18)) and is going to be integrated out. Thus, using fit results, B(B → D�ν) and

ρ2
D, we can calculate G(1)|Vcb|.

4.4.2 F(1)|Vcb|2

The differential decay rate for B → D∗�ν decays is given in Equation (2.26). Com-

bined with the CLN parametrization given in Equation (2.25), the differential decay

rate is given by

dΓ(B → D∗�ν)
dw

=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2(w + 1)2

×[F(1)]2[1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3]2(h̃2
+ + h̃2

− + h̃2
0) (4.13)
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Note that F(1) = hA1(1). By integrating over w, we get

B(B → D∗�ν)
τB

=
G2

Fm
5
B

48π3
r3 (F(1)|Vcb|)2∫

(w2 − 1)1/2(w + 1)2(h̃2
+ + h̃2

− + h̃2
0)

×[1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3]2dw (4.14)

Thus, using fit results B(B → D∗�ν), R1, R2 and ρ2, we can calculate F(1)|Vcb|.

4.5 Extraction of |Vcb|
To extract |Vcb|, we use theoretical calculations of G(1) and F(1). For G(1), we

use [23]

G(1) = 1.074 ± 0.018 ± 0.016 (4.15)

and for F(1) [34],

F(1) = 0.924 ± 0.012 ± 0.019 (4.16)

These need to be multiplied by the QED radiative correction factor of 1.007 [35].
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Chapter 5

Details of MC re-weighting

Because of theoretical and experimental improvements, some numbers and formulas

used in existing MC are obsolete. In order to take new results into account, we re-

wight existing MC. In our analysis, we re-weight decay branching fractions and form

factors. In this chapter, the details of MC re-weighting are presented.

5.1 Background BF re-weighting

We need to update some of decay branching fractions in background processes to get

a better description of data.

5.1.1 Semileptonic D(Ds) decay branching fractions

For uncorrelated and correlated cascade lepton backgrounds, we correct the branching

fractions of semileptonic D(Ds) decays. The decay modes updated in our analysis

are listed in Table 9.3.

5.1.2 Inclusive B → X�ν decay branching fractions

For uncorrelated direct lepton and combinatorial backgrounds, we correct the branch-

ing fraction of inclusive B → X�ν decays. Weights are given by the ratios of new and

old branching fractions as summarized in the table below. New branching fractions

are taken from Refs. [10,36] and averaged assuming isospin symmetry. These weights

are only applied to the B decay that produces the lepton in the D� candidate.
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Decay mode MC New BF [10,36] Weight

B+ → X̄0�+ν 0.106088 0.1112 ± 0.0019 1.048 ± 0.018

B0 → X−�+ν 0.106100 0.1038 ± 0.0018 0.979 ± 0.017

5.1.3 Inclusive B → D(Ds) decay branching fractions

For uncorrelated direct lepton, uncorrelated cascade lepton, correlated cascade lepton

and fake lepton backgrounds, we correct the branching fraction of inclusive B →
D(Ds) decays using measured branching fractions from Refs. [37, 38]. The D(Ds)

momentum dependent weights are given in Figures 5.1 - 5.3. These weights fluctuate

due to poor statistics of the measurements. Thus, we fit the weight distributions

with a 4-th (3-rd) order polynomial, and use the fit function to apply weights. If we

apply these weights to, for example, uncorrelated direct lepton background, we get

the D momentum distribution shown in Figure 5.4.
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Figure 5.1: [B → D0 weights] 4th order polynomial fit for B → D0 weight. Top-left :
B− → D+, top-right : B̄0 → D0, bottom-left : B+ → D0 and bottom-right : B0 → D0
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Figure 5.2: [B → D+ weights] 4th order polynomial fit for B → D+ weight. Top-left :
B− → D+, top-right : B̄0 → D+, bottom-left : B+ → D+ and bottom-right : B0 → D+
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Figure 5.4: [Effect of B → D BF correction] Effect of B → D BF correction
on uncorrelated direct lepton background. The black points with error bars are after
correction, red histogram is before correction.



56

5.2 Charm decay BF re-weighting

For charm decay BFs, we adopt the following new values in our fit. These are not

applied at the candidate level in order to allow them, if desired, to be determined in

the fit. Thus, these values go into the coefficients in the fit. See details in section 6.4.

Subsequently, it was decided to hold these BFs fixed.

5.2.1 D∗∗ decay branching fractions

For D∗
0, D1 and D′

1, based on isospin symmetry, we use

B(D∗+
0 → D0π+) = B(D∗0

0 → D+π−) = B(D+
1 → D∗0π+) = B(D0

1 → D∗+π−)

= B(D′+
1 → D∗0π+) = B(D′0

1 → D∗+π−) = 0.6667

(5.1)

and

B(D∗+
0 → D+π0) = B(D∗0

0 → D0π0) = B(D+
1 → D∗+π0) = B(D0

1 → D∗0π0)

= B(D′+
1 → D∗+π0) = B(D′0

1 → D∗0π0) = 0.3333
(5.2)

Here we assume that D∗∗ decays 100 % into D(∗)π. However there is an observation

of D1 → Dπ+π− decays [39]. We consider this in the systematic study in chapter 9.

For D∗
2, from two measurements in Ref. [10],

B(D∗+
2 → D0π+)

B(D∗+
2 → D∗0π+)

= 1.9 ± 1.1 ± 0.3 (5.3)

B(D∗0
2 → D+π−)

B(D∗0
2 → D∗+π−)

= 2.3 ± 0.6 (5.4)

BaBar measure [49]

B(D∗+
2 → D0π+) + B(D∗0

2 → D−π+)

B(D∗+
2 → D(∗)0π+) + B(D∗0

2 → D(∗)+π−)
= 0.62 ± 0.03 ± 0.06 (5.5)
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Assuming isospin symmetry, we take an average over these three results to get

fD∗
2
≡ B(D∗+

2 → D0π+)

B(D∗+
2 → D∗0π+)

=
B(D∗0

2 → D+π−)

B(D∗0
2 → D∗+π−)

= 1.7 ± 0.4 (5.6)

Individual branching fractions are given by following formulae

B(D∗+
2 → D0π+) = B(D∗0

2 → D+π−) =
2fD∗

2

3(1 + fD∗
2
)

(5.7)

B(D∗+
2 → D+π0) = B(D∗0

2 → D0π0) =
fD∗

2

3(1 + fD∗
2
)

(5.8)

B(D∗+
2 → D∗0π+) = B(D∗0

2 → D∗+π−) =
2

3(1 + fD∗
2
)

(5.9)

B(D∗+
2 → D∗+π0) = B(D∗0

2 → D∗0π0) =
1

3(1 + fD∗
2
)

(5.10)

5.2.2 B(D0 → K−π+)

Particle Data Group (PDG) uses five measurements to make an average [10]. One of

them is from the CLEO-c experiment. We replace the CLEO-c result by an updated

CLEO-c result [40]. We also add new BaBar measurement [41], and take an average

of these six values to get

B(D0 → K−π+) = 0.03912 ± 0.00048 (5.11)

We use this value in our fit.

5.2.3 B(D+ → K−π+π+)

The PDG uses three measurements to make an average [10]. One of them is again

from the CLEO-c experiment. We replace the CLEO-c result by an updated CLEO-c

result [40] and take an average of these measurements to get

B(D+ → K−π+π+) = 0.0915 ± 0.0020 (5.12)
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We use this value in our fit.

5.2.4 D∗+ decay BF

We use PDG values [10]

B(D∗+ → D0π+) = 0.677 ± 0.005

B(D∗+ → D+π0) = 0.307 ± 0.005

B(D∗+ → D+γ) = 0.016 ± 0.004

(5.13)

For D∗0 decay BF, we keep existing MC values because there are no new results.

5.3 An example of BF re-weighting

Here we give a specific example to illustrate BF re-weighting. In the case of a corre-

lated cascade lepton background :

• B+ → D∗−D+K+

with D∗− → D̄0π− and D+ → K̄0e+ν

and these D̄0 and e+ form a Dl candidate as if B+ → D̄0e+ν

The number of this background is given by

N = (number of produced B+B− pairs)×
B(B+ → D∗−D+K+)B(D∗− → D̄0π−)B(D+ → K̄0e+ν)B(D̄0 → K+π−)

(5.14)

Thus, it is proportional to a product of branching fractions. This means that the

weight is given by the ratio of new and old branching fractions. This also means

that if we know, for example, D+ → K̄0e+ν is included in the chain, we can apply

a weight only for the known part. We do not have to know the details of the entire

decay chain to apply a weight.

In the above example, for the lepton side, we apply

• Inclusive B+ → D+ BF weight (section 5.1.3)
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• Semileptonic D+ → K̄0e+ν BF weight (section 5.1.1)

and for the D side, we apply

• D∗− → D̄0π− decay BF weight (section 5.2.4)

• D0 → K−π+ decay BF weight (section 5.2.2)

Total weight is given by the product of these 4 weights. The former two weights are

applied in the histogram making process and the latter two weights are applied in

the fitting process.

5.4 Beam energy re-weighting

The beam energy distribution in data is not well simulated in the MC. There is a

dedicated study of data beam energy using fully reconstructed B decays. We use the

result to make the MC beam energy distribution match that of the data. Table 5.1

shows the mean and width of the beam energy distributions of data and MC averaged

over each run period of data taking.

Beam energies of data and MC, as a function of energy E, are parametrized by

Gaussians. We take ratios of these two Gaussians to get a weight

W beam(E) = ξ exp

[
−(Edata − E)2

2σ2
data

]/
exp

[
−(EMC − E)2

2σ2
MC

]
(5.15)

where ξ is the normalization factor to make the integrals of original and weighted

distributions equal.

The weight W beam(E) can be read as the ratio of numbers of data and MC events

at beam energy E. Thus, for example, if the weight is larger than 1, it means we need

to increase the number of MC events by the factor W beam(E). This is exactly what

we did in above BF re-weighting. This W beam(E) needs to be multiplied by other

weights to be integrated into total weight. W beam(E) depends on the event because
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data MC Normalization
Run mean (Edata) width (σdata) mean (EMC) width (σMC) factor (ξ)

Run1 10.577618 0.00499 10.5778 0.00481 0.963934
Run2 10.578668 0.00501 10.5778 0.00481 0.960076
Run3 10.578393 0.00487 10.5778 0.00481 0.987636
Run4 10.577699 0.00492 10.5778 0.00481 0.977638

Table 5.1: [Beam energy] Average beam energy and width of each Run. Normalization
factor ξ is also shown.

the beam energy E differs event by event. Thus, this weight goes into the histogram

making process.

5.4.1 OffPeak data beam energy re-weighting

OffPeak data is taken at the energy 39 MeV below the OnPeak data energy. Thus,

we need to scale lepton energy and D energy by a factor to match OnPeak data. The

factor rbeam is given by

rbeam =
EOnPeak

data

EOffPeak
data

=
Edata

Edata − 0.039 GeV
(5.16)

where Edata is given in Table 5.1.
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5.5 FF re-weighting

There have been some improvements to form factors (FF) parameterization since

our MC were generated. To take those improvements into account, form factor re-

weighting is necessary. Moreover, as described in chapter 4, FF re-weighting is also

required to fit for FF parameters.

5.5.1 Normalization

When we change parameters in form factor (FF) parameterizations, we need to make

sure that total decay rates stay the same. Thus, we need a normalization factor, RN ,

such that

Γ =

∫
dΓ(old FF)

dw
dw = RN

∫
dΓ(new FF)

dw
dw (5.17)

In the actual integration we use a numerical integration method : Gaussian quadra-

ture.

5.5.2 B → D�ν decays

In this mode, the ISGW2 model [27, 28] was used in existing MC. ISGW2 is a con-

stituent quark model. We need to replace it by the HQET (Heavy Quark Effective

Theory) model [21, 22]. The ISGW2 model gives form factors f+(q2) and f−(q2),

where q2 is the momentum transfer from the hadronic system (B and D mesons) to

lepton pairs (� and ν). The HQET model gives form factors h+(w) and h−(w), where

w is the velocity transfer (see section 2.4.1 and Appendix E). These form factors are

related by

h+ =
1

R

(
f+ +

1 − r

1 + r
f−

)
, h− =

1

R

(
1 − r

1 + r
f+ + f−

)
(5.18)
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The differential decay rate is proportional to JD(w) (Equation (2.11)). Here

(1 + r)h+ − (1 − r)h−

= (1 + r)
1

R

(
f+ +

1 − r

1 + r
f−

)
− (1 − r)

1

R

(
1 − r

1 + r
f+ + f−

)
=

1 + r

R

(1 + r)2 − (1 − r)2

(1 + r)2
f+ =

1 + r

R

4r

(1 + r)2
f+ =

1 + r

R
R2f+

= (1 + r)Rf+ (5.19)

Thus

J ISGW2
D = [(1 + r)Rf+]2 (5.20)

In the HQET model, from Equations (2.15) and (2.17)

J HQET
D = (1 + r)2[h+(1)]2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2 (5.21)

We can express f+ as a function of w. Then, the weight is given by

W (w) =
J HQET

D

J ISGW2
D

RN =
[h+(1)]2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2

[Rf+]2
RN

(5.22)

where, the normalization factor, RN , is given by

∫ 1.590

0

dw (w2 − 1)3/2 [Rf+]2

= RN

∫ 1.590

1

dw (w2 − 1)3/2[h+(1)]2 ×[
1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3
]2

(5.23)

Figure 5.5 shows the distribution of the weight in the case of ρ2
D = 1.17 [36], cor-

responding to the normalization factor RN = 1.686. The change in the spectra of

lepton momentum and D momentum are given in Figure 5.6.

In the decay rate formula (Equation (2.10)), lepton mass is set to zero; however,
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muon mass may not be neglected [42–44]. If we include lepton mass terms, an

additional phase space factor

fps =

(
1 − m2

�

m2
B +m2

D − 2mBmDw

)2

=

(
1 − 1

1 + r2 − 2rw

m2
�

m2
B

)2

(5.24)

needs to be inserted in the decay rate formula. Moreover, the form factor contribution

to the differential decay rate is given by [43]

JD(w) = (1 + r)2|h+(w)|2
[
1 + KD(w)

m2
�

m2
B

]
(5.25)

where

KD(w) ≡
[
1 + 3

(
1 − r

1 + r

)2 (
w + 1

w − 1

)]
1

2(1 + r2 − 2rw)
(5.26)

Hence, we need an additional weight for muons :

WD =

(
1 − 1

1 + r2 − 2rw

m2
�

m2
B

)2 [
1 + KD(w)

m2
�

m2
B

]
(5.27)

5.5.3 B → D∗�ν decays

The differential decay rate is given in Equation (2.19). To make the notation simple,

we define

cL ≡ cos θ�, cV ≡ cos θV , cχ ≡ cosχ (5.28)

These definitions along with the notations in Equation (2.28) simplify the differential

decay rate to

dΓ(B → D∗�ν)
dwdcV dcLdχ

=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2 × 9

64π
(w + 1)2 JFF (5.29)



64

HcorrFF
Entries  187059

Mean     1.01

RMS     0.114

Underflow       0

Overflow        0
Integral  1.871e+05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2000

4000

6000

8000

10000

12000

14000

16000

HcorrFF
Entries  187059

Mean     1.01

RMS     0.114

Underflow       0

Overflow        0
Integral  1.871e+05

HcorrFF

Figure 5.5: [B → D�ν FF weight] The distribution of weights for B → D�ν decays.
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where

JFF (R1, R2, ρ
2) = [hA1(w)]2 ×

[(1 − cL)2(1 − c2V )h̃2
+ + (1 + cL)2(1 − c2V )h̃2

−

+4(1 − c2L)c2V h̃
2
0 − 2(1 − c2L)(1 − c2V )(2c2χ − 1)h̃+h̃−

−4
√

1 − c2L(1 − cL)
√

1 − c2V cV cχh̃+h̃0

+4
√

1 − c2L(1 + cL)
√

1 − c2V cV cχh̃−h̃0]

(5.30)

In existing MC, the values of parameters are

RMC
1 = 1.18, RMC

2 = 0.72, (ρ2)
MC

= 0.92 (5.31)

with the parametrization

R1(w) = RMC
1

R2(w) = RMC
2

hA1(w) = hA1(1)
[
1 − (ρ2)

MC
(w − 1)

] (5.32)

We use the CLN parametrization given in Equation (2.25). Thus, the weight is given

by

W (w) =
JFF (R1, R2, ρ

2)

JFF (RMC
1 , RMC

2 , ρMC
0 )

(5.33)

To calculate the normalization factor RN , we need to integrate over cV , cL and χ.

Thus, it is easier to use dΓ/dw form given in Equation (2.26) which is proportional

to JWD(R1, R2, ρ
2) (Equation(2.27)). Thus, the normalization factor is given by

∫ 1.504

1

dw (w2 − 1)1/2JWD(R0
1, R

0
2, ρ

2
0)

= RN

∫ 1.504

1

dw (w2 − 1)1/2JWD(R1, R2, ρ
2) (5.34)
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Figure 5.7 shows the distribution of the weight in the case of the CLN parametrization

with [45, 46]

ρ2 = 1.179, R1 = 1.417, R2 = 0.836 (5.35)

corresponding to the normalization factor RN = 1.033. The change in the spectra

of lepton momentum and D momentum, which is different from D∗ momentum, are

given in Figure 5.8.

If we include muon mass terms, JWD(R1, R2, ρ
2) needs to be replaced by [43]

JWD(R1, R2, ρ
2) = (w + 1)2[hA1]

2(h̃2
+ + h̃2

− + h̃2
0)

[
1 + KD∗(w)

m2
�

m2
B

]
(5.36)

where

KD∗(w) ≡
[
1 +

3

2

h̃2
t

h̃2
+ + h̃2− + h̃2

0

]
1

2(1 + r2 − 2rw)
(5.37)

Hence, we need an additional weight for muons :

WD∗ =

(
1 − 1

1 + r2 − 2rw

m2
�

m2
B

)2 [
1 + KD∗(w)

m2
�

m2
B

]
(5.38)

The h̃t(w) in the above equations is defined by

h̃t(w) ≡ (1 − r)H̃t(w) (5.39)

Here, H̃t(w) is related to Ht by a relation similar to Equation (2.19). If we define a

new form factor ratio R3 similar to the ones given in Equation (2.21)

R3(w) ≡ hA3 − rhA2

hA1

(5.40)
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then,

h̃t(w) =
√
w2 − 1

(
1 +

r − w

w + 1
R3 − 1 − 2rw + r2

r(w + 1)
R2

)
(5.41)

Since the contribution of the KD∗(w) term is small, we approximate R3(w) � 1. This

approximation has a negligible effect on our final results.

5.5.4 B → D∗∗�ν decays

In our MC, the ISGW2 model was used. We would like to use the HQET-based

LLSW model [47,48]. Details of the LLSW model are given in Appendix G. We use

the Approximation B1 with FF slope τ̂ ′ = −1.5 to calculate the form factors and the

Approximation B2 to estimate systematic uncertainties. The differential decay rates

are given as functions of w and θ. This θ is the angle between the charged lepton

and the charmed meson in the rest frame of the virtual W boson. Thus θ = π − θ�,

e.g.,

cos θ = cos(π − θ�) = − cos θ� (5.42)

B → D∗
0�ν

The ISGW2 form factors u+(q2) and u−(q2) are related to the LLSW form factors

g+(w) and g−(w)

g+ =
1

R

(
u+ +

1 − r

1 + r
u−

)
, g− =

1

R

(
1 − r

1 + r
u+ + u−

)
(5.43)

where

R =
2
√
mBmD∗

0

mB +mD∗
0

, r =
mD∗

0

mB
(5.44)

The differential decay rate is given by

d2ΓD∗
0

dwd cos θ
=
G2

F |Vcb|2m5
B

64π3
r3(w2 − 1)3/2 ID∗

0
(w, θ) (5.45)
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Figure 5.7: [B → D∗�ν FF weight] The distribution of weights for B → D∗�ν decays.
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Figure 5.8: [p� and pD after B → D∗�ν re-weighting] Lepton momentum (left) and
D momentum (right) spectrum of B → D∗�ν decays. The top is D0 and the bottom is
D+. Black points are with old FF parameters and histogram is with new FF parameters.
Green is the contribution from B+ and blue is from B0.
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where

ID∗
0
(w, θ) = (1 − cos2 θ)[(1 + r)g+ − (1 − r)g−]2 (5.46)

The weight is given by the ratio of the ID∗
0

terms :

W (w) =
ILLSW

D∗
0

IISGW2
D∗

0

RN (5.47)

Integrated over θ, the differential decay rate is

dΓ(B → D∗
0�ν)

dw
=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)3/2 JD∗

0
(w) (5.48)

where

JD∗
0
(w) = [(1 + r)g+ − (1 − r)g−]2 (5.49)

Thus, the normalization factor, RN , is given by

∫ 1.327

0

(w2 − 1)3/2J ISGW2
D∗

0
dw = RN

∫ 1.327

1

(w2 − 1)3/2J LLSW
D∗

0
dw (5.50)

Figure 5.9 shows the distribution of the weight in the case of the Approximation B1,

corresponding to the normalization factor RN = 0.1624.

B → D′
1�ν

The ISGW2 form factors q, l and c+ are related to the LLSW form factors gA, gV1,

gV2 and gV3.

gA = RmB(1 + r)q (5.51)

gV1 =
2

RmB(1 + r)
l (5.52)

gV3 + rgV2 = RmB(1 + r)c+ (5.53)
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where

R =
2
√
mBmD′

1

mB +mD′
1

, r =
mD′

1

mB
(5.54)

The differential decay rate is given by

d2ΓD′
1

dwd cos θ
=
G2

F |Vcb|2m5
B

64π3
r3(w2 − 1)1/2 ID′

1
(w, θ) (5.55)

where

ID′
1
(w, θ) = (1 − cos2 θ)[(w − r)gV1 + (w2 − 1)(gV3 + rgV2)]

2

+(1 − 2rw + r2)[(1 + cos2 θ)(g2
V1

+ (w2 − 1)g2
A) − 4 cos θ

√
w2 − 1gV1gA] (5.56)

The weight is given by the ratio of the ID′
1

terms :

W (w) =
ILLSW

D′
1

IISGW2
D′

1

RN (5.57)

Integrated over θ, the differential decay rate is

dΓ(B → D1�ν)

dw
=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2 JD′

1
(w) (5.58)

where

JD′
1
(w) =

[
(w − r)gV1 + (w2 − 1)(gV3 + rgV2)

]2

+2(1 − 2rw + r2)[g2
V1

+ (w2 − 1)g2
A] (5.59)

Thus, the normalization factor, RN , is given by

∫ 1.316

0

dw(w2 − 1)1/2J ISGW2
D′

1
= RN

∫ 1.316

1

dw(w2 − 1)1/2J LLSW
D′

1
(5.60)
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Figure 5.9 shows the distribution of the weight in the case of the Approximation B1,

corresponding to the normalization factor RN = 0.5488.

B → D1�ν

The ISGW2 form factors v, r and s+ are related to the LLSW form factor fA, fV1,

fV2 and fV3 .

fA = RmB(1 + r)v (5.61)

fV1 =
2

RmB(1 + r)
r (5.62)

fV3 + rfV2 = RmB(1 + r)s+ (5.63)

where

R =
2
√
mBmD1

mB +mD1

, r =
mD1

mB
(5.64)

The differential decay rate is given by

d2ΓD1

dwd cos θ
=
G2

F |Vcb|2m5
B

64π3
r3(w2 − 1)1/2 ID1(w, θ) (5.65)

where

ID1(w, θ) = (1 − cos2 θ)[(w − r)fV1 + (w2 − 1)(fV3 + rfV2)]
2

+(1 − 2rw + r2)[(1 + cos2 θ)(f 2
V1

+ (w2 − 1)f 2
A) − 4 cos θ

√
w2 − 1fV1fA] (5.66)

The weight is given by the ratio of the ID1 terms :

W (w) =
ILLSW

D1

IISGW2
D1

RN (5.67)
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Integrated over θ, the differential decay rate is

dΓ(B → D1�ν)

dw
=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2 JD1(w) (5.68)

where

JD1(w) =
[
(w − r)fV1 + (w2 − 1)(fV3 + rfV2)

]2

+2(1 − 2rw + r2)[f 2
V1

+ (w2 − 1)f 2
A] (5.69)

Thus, the normalization factor, RN , is given by

∫ 1.320

0

dw(w2 − 1)1/2J ISGW2
D1

= RN

∫ 1.320

1

dw(w2 − 1)1/2J LLSW
D1

(5.70)

Figure 5.9 shows the distribution of the weight in the case of the Approximation B1,

corresponding to the normalization factor RN = 0.7330.

B → D∗
2�ν

The ISGW2 form factors h, k and b+ are related to the LLSW form factor kV , kA1,

kA2 and kA3.

kV = Rm2
B(1 − r)h (5.71)

kA1 =
2

R(1 − r)
k (5.72)

kA3 + rkA2 = Rm2
B(1 − r)b+ (5.73)

where

R =
2
√
mBmD∗

2

mB +mD∗
2

, r =
mD∗

2

mB
(5.74)
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The differential decay rate is given by

d2ΓD∗
2

dwd cos θ
=
G2

F |Vcb|2m5
B

64π3
r3(w2 − 1)3/2 1

2
ID∗

2
(w, θ) (5.75)

where

ID∗
2
(w, θ) =

4

3
(1 − cos2 θ)[(w − r)kA1 + (w2 − 1)(kA3 + rkA2)]

2

+(1 − 2rw + r2)[(1 + cos2 θ)(k2
A1

+ (w2 − 1)k2
V ) − 4 cos θ

√
w2 − 1kA1kV ] (5.76)

The weight is given by the ratio of the ID∗
2

terms :

W (w) =
ILLSW

D∗
2

IISGW2
D∗

2

RN (5.77)

Integrated over θ, decay rate is

dΓ(B → D∗
2�ν)

dw
=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)3/2 JD∗

2
(w) (5.78)

where

JD∗
2
(w) =

2

3

[
(w − r)kA1 + (w2 − 1)(kA3 + rkA2)

]2

+2(1 − 2rw + r2)[k2
A1

+ (w2 − 1)k2
V ] (5.79)

Thus, the normalization factor, RN , is given by

∫ 1.306

0

dw(w2 − 1)3/2J ISGW2
D∗

2
= RN

∫ 1.306

1

dw(w2 − 1)3/2J LLSW
D∗

2
(5.80)

Figure 5.9 shows the distribution of the weight in the case of the Approximation B1,

corresponding to the normalization factor RN = 0.7490.
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Figure 5.9: [B → D∗∗�ν FF weight] The distribution of weights for B → D∗
0�ν decays

(top-left), B → D′
1�ν decays (top-right), B → D1�ν decays (bottom-left) and B → D∗

2�ν
decays (bottom-right).

Effect on kinematic variables

The changes in the spectra of lepton momentum, D momentum, which is different

from D∗∗ momentum, and cos θB−Dl are given in Figures 5.10 and 5.11.
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Figure 5.10: [p� and pD after B → D∗∗�ν re-weighting] Lepton momentum (left) and
D momentum (right) spectrum of B → D∗∗�ν decays. Black points are ISGW2 model and
colored histogram is LLSW model. Red is D∗

0, green is D1, blue is D′
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Figure 5.11: [cos θB−Dl after B → D∗∗�ν re-weighting] cos θB−Dl of B → D∗∗�ν
decays. Black points are ISGW2 model and colored histogram is LLSW model. Red is D∗

0,
green is D1, blue is D′

1 and yellow is D∗
2.
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Chapter 6

Details of the fitting method

6.1 The χ2

Since we reconstruct D0� and D+�, the χ2 consists of two parts as given in the

following equation

χ2 =

D0�∑
i

(Ndata
i −∑

j C
MC
j NMC

ij )2

(σdata
i )2 +

∑
j(C

MC
j σMC

ij )2
+

D+�∑
i

(Ndata
i −∑

j C
MC
j NMC

ij )2

(σdata
i )2 +

∑
j(C

MC
j σMC

ij )2
(6.1)

where

• i represents each bin

• j represents each MC mode.

MC modes are listed in section 6.4 separately for the D0 and D+ samples. See also

Appendix A.

Quantities in the χ2 are:

• Ndata
i = The number of continuum subtracted data candidates in the i-th bin.

(see section 6.3.2)

• NMC
ij = The number of candidates in the i-th bin in MC mode j, luminosity

normalized to OnPeak data. Details are in section 6.3.1. The effect of data
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MC differences from tracking and PID are corrected (see section 6.3.3). MC

re-weighting is also done.

• CMC
j = The coefficient of each MC mode (j). These include branching fractions

to be determined in the fit. Details are in section 6.4.

• σdata
i = The statistical uncertainty of Ndata

i . Details are in section 6.3.4.

• σMC
ij = The statistical uncertainty of NMC

ij . Details are in section 6.3.4.

We use bins which have more than 10 expected candidates (
∑

j C
MC
j NMC

ij > 10) and

neglect other bins to avoid non-Gaussian effects. The number 10 is changed for cross

checks.

6.2 Binning (i)

We use the following binning to accommodate the kinematic cuts described in sec-

tion 3.4.5

• lepton momentum in the CM frame p∗�

(10 bins (GeV)) : 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.35

• D momentum in the CM frame p∗D

(9 bins (GeV)) : 0.8, 1.1, 1.35, 1.5, 1.65, 1.8, 1.95, 2.1, 2.25, 2.45

• cos θB−Dl

(3 bins) : -2, -1, 0, 1.1

The binning is decided by balancing two opposing requirements :

• It needs to be as fine as possible to preserve the sensitivity to the fitted param-

eters.

• It needs to be as coarse as necessary to have adequate statistics per bin to allow

the use of a χ2 fit.

The projection plots with this binning are given in chapter 8.
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6.3 Histogram making

6.3.1 Number of MC Candidates NMC
ij

We calculate the number of candidates from BB̄ MC. The number of MC candidates

NMC
ij is given by

NMC
ij = rLumi

MC

∑
k

rTrk
k rKPID

k rLPID
k WMC

jk (6.2)

where

• k represents the k-th candidate in the i-th bin.

The sum of k is taken only over the candidate in the i-th bin.

and

• rLumi
MC is the luminosity normalization factor (⇒ section 6.3.2)

• rTrk
k is the tracking efficiency correction factor (⇒ section 6.3.3)

• rKPID
k is the kaon PID correction factor (⇒ section 6.3.3)

• rLPID
k is the lepton PID correction factor (⇒ section 6.3.3)

• WMC
jk is the MC weight (⇒ chapter 5)

6.3.2 Luminosity normalization rLumi

All MC and OffPeak data are normalized to OnPeak data by luminosity. Supposing

OnPeak luminosity is LOnPeak and MC luminosity is LMC, the normalization factor

rLumi
MC is given by

rLumi
MC =

LOnPeak

LMC
(6.3)

The LMC can be determined as follows. First the number of BB̄ events is counted

by applying hadronic event selection to OffPeak subtracted data. Then the number
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is compared with the number of simulated events to determine LMC. The relative

numbers of B+B− and B0B̄0 events are explained in section 6.4.

To normalize the OffPeak data, since OffPeak data is taken at 39 MeV lower

energy than OnPeak data, we need to correct for 1/s dependence of e+e− → f f̄ cross

section, where s is the square of CM beam energy :

sOnPeak = 10.582 GeV2

sOffPeak = (10.58 − 0.039)2 GeV2
(6.4)

Thus, correction factor is given by

rLumi
OffPeak =

LOnPeaksOffPeak

LOffPeaksOnPeak
(6.5)

The Ndata
i is calculated with this luminosity factor

Ndata
i = NOnPeak

i −NOffPeak
i = NOnPeak

i − rLumi
OffPeakN

0
i (6.6)

where N0
i is the number of OffPeak candidates in i-th bin before normalization.

Statistical uncertainties are explained in section 6.3.4

6.3.3 PID and Tracking efficiency correction

Tracking efficiency and PID efficiency are not completely equal in both data and MC.

There is always a difference no matter how sophisticated the codes to reconstruct

charged tracks and to identify particles are. Tracking efficiency and PID corrections

are to account for the residual differences between data and MC. Correction factors

or weights are determined by comparing data and MC on specific control samples.

Tracking efficiency correction : rTrk
k

Tracking efficiency correction factors are given for each charged track, depending on

its transverse momentum, direction in the laboratory frame and the multiplicity of
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the event. These correction factors are determined by comparing data and MC on

multi-hadron events.

Three charged tracks are used to reconstruct a D0(Kπ)l candidate, and 4 charged

tracks to reconstruct a D+(Kππ)l candidate. The correction factor rTrk
k is given by

the product of the correction factors for each charged track in the k-th candidate.

PID correction : rLPID
k and rKPID

k

PID correction factors (called weights) are given one for each PID selector. Thus,

we have one factor rLPID
k for lepton (PidLHElectron for electrons and muNNTight

for muons) and another factor rKPID
k for kaon (KLHNotPion) for each candidate (k).

These weights are determined by comparing data and MC on specific control samples

such as e+e− → e+e−γ, e+e− → µ+µ−γ and D∗+ → D0π+ → (K−π+)π+.

When the particles are correctly identified, rLPID
k and rKPID

k are the factors to cor-

rect for the identification efficiency differences. When the particles are mis-identified,

rLPID
k and rKPID

k give the factors to correct fake rate differences.

6.3.4 Statistical uncertainty σi

After the D mass sideband subtraction, the number and statistical uncertainty of

OnPeak data are given by

NOnPeak
i = NOnPeak

peak i
− rsideN

OnPeak
side i

σOnPeak
i =

√
NOnPeak

peak i
+ r2

sideN
OnPeak
side i

(6.7)

where rside is the scale factor to account for the differences between peak and side-

band mass ranges. Statistical uncertainties of OffPeak data and MC are a bit more

complicated because they are luminosity normalized and re-weighted. In this section,

we explain how the statistical uncertainty of OffPeak data and MCs are calculated.
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Luminosity normalization and statistical uncertainty

OffPeak and MC are luminosity normalized to OnPeak data. We take OffPeak data

as an example. If the number of OffPeak candidates in the i-th bin is N0
i = N0

peaki
−

rsideN
0
sidei, the number of luminosity normalized candidates in the bin is given by

NOffPeak
i = rLumi

OffPeakN
0
i = rLumi

OffPeak

(
N0

peaki
− rsideN

0
sidei

)
(6.8)

and the statistical uncertainty of the bin is given by

σOffPeak
i = rLumi

OffPeak

√
N0

peaki
+ r2

sideN
0
sidei (6.9)

MC re-weighting and statistical uncertainty

Supposing the total weight of the k-th candidate of MC mode j is

wT
jk ≡ rTrk

k rKPID
k rLPID

k WMC
jk (6.10)

The number of candidates in the i-th bin is given by

NMC
ij = rLumi

MC

(
peak∑

k

wT
jk − rside

side∑
k

wT
jk

)
(6.11)

We add the statistical uncertainties quadratically. Thus,

σMC
ij = rLumi

MC

√√√√peak∑
k

(
wT

jk

)2
+ r2

side

side∑
k

(
wT

jk

)2
(6.12)

6.4 Coefficients in the fitting CMC
j

Coefficients consist of branching fractions, some of which are to be determined by

the fit. Coefficients are given by taking ratios between new branching fractions and
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the ones used in MC (the ones with superscript MC in the following subsections).

The decays contributing to each MC mode are shown in Appendix A and B.

The luminosity of BB̄ MC is calculated by the generated number of events and

the counted number of B in OnPeak data as described in section 6.3.2. The luminos-

ity calculation was done based on the assumption that produced number of B+B−

and B0B̄0 pairs are equal. The difference in Υ(4S) → B+B− and Υ(4S) → B0B̄0

branching fractions is taken into account in the coefficients.

6.4.1 Number of produced B

Branching fractions of B+B− and B0B̄0 of Υ(4S) resonance are denoted by

f+− = B(Υ(4S) → B+B−)

f00 = B(Υ(4S) → B0B̄0)
(6.13)

We define the ratio of these two branching fractions

f+0 ≡ f+−
f00

(6.14)

In existing MC, fMC
+0 = 1. We also assume that Υ(4S) decays only BB̄ pairs, i.e.

f+− + f00 = 1 (6.15)

The number of produced B is related to the ratio f+0. Supposing the number of

BB̄-pairs produced is given by NBB̄, the number of produced neutral B is

Nprod
neut = 2f00NBB̄ (6.16)

and the number of produced charged B is

Nprod
chrg = 2f+−NBB̄ = f+0N

prod
neut (6.17)
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Thus,

Nprod
neut =

2

1 + f+0
NBB̄, Nprod

chrg =
2f+0

1 + f+0
NBB̄ (6.18)

6.4.2 BB̄ luminosity correction

As explained above, we assumed f+0 = 1 in the luminosity normalization. We need

to correct these. The correction factors are given by

CB+ =
2f+0

1 + f+0
for B+B− MC

CB0 =
2

1 + f+0
for B0B̄0 MC (6.19)

The coefficients CMC
j include the factor CB+ if those are of B+B− MC and CB0 if

those are of B0B̄0 MC.

6.4.3 Examples of coefficients

Coefficients are given by taking a ratio between new values and the values used in

our MC. We give a few examples to illustrate how coefficients are calculated.

1. B0 → D∗−�+ν with D∗− → D̄0π−

The number of produced events is given by

N = NBB̄CB0B(B0 → D∗−�+ν)B(D∗+ → D0π+)B(D0 → K−π+) (6.20)

Thus, the coefficient is given by

CMC
3 =

CB0B(B0 → D∗−�+ν)B(D∗+ → D0π+)B(D0 → K−π+)

BMC(B0 → D∗−�+ν)BMC(D∗+ → D0π+)BMC(D0 → K−π+)
(6.21)

2. Uncorrelated direct lepton background (B+B− → D0� case)

CMC
16 =

CB+B(D0 → K−π+)

BMC(D0 → K−π+)
(6.22)
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3. Correlated cascade lepton background (B0B̄0 → D+� case)

CMC
20 =

CB0B(D+ → K−π+π+)

BMC(D+ → K−π+π+)
(6.23)

6.5 MC modes for D0

The following MC modes eventually produce D0� candidates.

6.5.1 Signals : j = 1 − 15

• j = 1 : B+ → D̄0�+ν

• j = 2 : B+ → D̄∗0�+ν with D̄∗0 → D̄0 + γ/π0

• j = 3 : B0 → D∗−�+ν with D∗− → D̄0π−

• j = 4 : B+ → D̄∗0
0 �

+ν with D̄∗0
0 → D̄0π0

• j = 5 : B0 → D∗−
0 �+ν with D∗−

0 → D̄0π+

• j = 6 : B+ → D̄0
1�

+ν

The decays contribute to this mode are

B+ → D̄0
1�

+ν with D̄0
1 → D∗−π+ and D∗− → D̄0π−

B+ → D̄0
1�

+ν with D̄0
1 → D̄∗0π0 and D̄∗0 → D̄0 + γ/π0

• j = 7 : B0 → D−
1 �

+ν

The decays contribute to this mode are

B0 → D−
1 �

+ν with D−
1 → D∗−π0 and D∗− → D̄0π−

B0 → D−
1 �

+ν with D−
1 → D̄∗0π− and D̄∗0 → D̄0 + γ/π0

• j = 8 : B+ → D̄′0
1 �

+ν

The decays contribute to this mode are

B+ → D̄′0
1 �

+ν with D̄′0
1 → D∗−π+ and D∗− → D̄0π−

B+ → D̄′0
1 �

+ν with D̄′0
1 → D̄∗0π0 and D̄∗0 → D̄0 + γ/π0
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• j = 9 : B0 → D′−
1 �

+ν

The decays contribute to this mode are

B0 → D′−
1 �

+ν with D′−
1 → D∗−π0 and D∗− → D̄0π−

B0 → D′−
1 �

+ν with D′−
1 → D̄∗0π− and D̄∗0 → D̄0 + γ/π0

• j = 10 : B+ → D̄∗0
2 �

+ν

The decays contribute to this mode are

B+ → D̄∗0
2 �

+ν with D̄∗0
2 → D∗−π+ and D∗− → D̄0π−

B+ → D̄∗0
2 �

+ν with D̄∗0
2 → D̄∗0π0 and D̄∗0 → D̄0 + γ/π0

B+ → D̄∗0
2 �

+ν with D̄∗0
2 → D̄0π0

• j = 11 : B0 → D∗−
2 �+ν

The decays contribute to this mode are

B0 → D∗−
2 �+ν with D∗−

2 → D∗−π0 and D∗− → D̄0π−

B0 → D∗−
2 �+ν with D∗−

2 → D̄∗0π− and D̄∗0 → D̄0 + γ/π0

B0 → D∗−
2 �+ν with D∗−

2 → D̄0π−

• j = 12 : B+ → D̄0π0�+ν

• j = 13 : B0 → D̄0π−�+ν

• j = 14 : B+ → D∗π�+ν

The decays contribute to this mode are

B+ → D∗−π+�+ν with D∗− → D̄0 + π−

B+ → D̄∗0π0�+ν with D̄∗0 → D̄0 + γ/π0

• j = 15 : B0 → D∗π�+ν

The decays contribute to this mode are

B0 → D∗−π0�+ν with D∗− → D̄0 + π−

B0 → D̄∗0π−�+ν with D̄∗0 → D̄0 + γ/π0
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6.5.2 Backgrounds : j = 16 − 27

• j = 16, Uncorrelated Direct Lepton from B+B−

• j = 17, Uncorrelated Direct Lepton from B0B̄0

• j = 18, Uncorrelated Cascade Lepton from B+B−

• j = 19, Uncorrelated Cascade Lepton from B0B̄0

• j = 20, Correlated Cascade Lepton from B+B−

• j = 21, Correlated Cascade Lepton from B0B̄0

• j = 22, Fake Lepton from B+B−

• j = 23, Fake Lepton from B0B̄0

• j = 24, Combinatorial with True Lepton from B+B−

• j = 25, Combinatorial with True Lepton from B0B̄0

• j = 26, Combinatorial with Fake Lepton from B+B−

• j = 27, Combinatorial with Fake Lepton from B0B̄0

6.6 MC modes for D+

The following MC modes eventually produce D+� candidates.

6.6.1 Signals : j = 1 − 14

• j = 1 : B0 → D−�+ν

• j = 2 : B0 → D∗−�+ν with D∗− → D− + γ/π0

• j = 3 : B+ → D̄∗0
0 �

+ν with D̄∗0
0 → D− + π+

• j = 4 : B0 → D∗−
0 �+ν with D∗−

0 → D−π0



87

• j = 5 : B+ → D̄0
1�

+ν with D̄0
1 → D∗− + π+ and D∗− → D− + π0/γ

• j = 6 : B0 → D−
1 �

+ν with D−
1 → D∗−π0 and D∗− → D− + π0/γ

• j = 7 : B+ → D̄′0
1 �

+ν with D̄′0
1 → D∗− + π+ and D∗− → D− + π0/γ

• j = 8 : B0 → D′−
1 �

+ν with D′−
1 → D∗−π0 and D∗− → D− + π0/γ

• j = 9 : B+ → D̄∗0
2 �

+ν

The decays contribute to this mode are

B+ → D̄∗0
2 �

+ν with D̄∗0
2 → D∗− + π+ and D∗− → D− + π0/γ

B+ → D̄∗0
2 �

+ν with D̄∗0
2 → D− + π+

• j = 10 : B0 → D∗−
2 �+ν

The decays contribute to this mode are

B0 → D∗−
2 �+ν with D∗−

2 → D∗−π0 and D∗− → D− + π0/γ

B0 → D∗−
2 �+ν with D∗−

2 → D−π0

• j = 11 : B+ → D−π+�+ν

• j = 12 : B0 → D−π0�+ν

• j = 13 : B+ → D∗−π+�+ν with D∗− → D− + γ/π0

• j = 14 : B0 → D∗−π0�+ν with D∗− → D− + γ/π0

6.6.2 Backgrounds : j = 15 − 26

• j = 15, Uncorrelated Direct Lepton from B+B−

• j = 16, Uncorrelated Direct Lepton from B0B̄0

• j = 17, Uncorrelated Cascade Lepton from B+B−

• j = 18, Uncorrelated Cascade Lepton from B0B̄0
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• j = 19, Correlated Cascade Lepton from B+B−

• j = 20, Correlated Cascade Lepton from B0B̄0

• j = 21, Fake Lepton from B+B−

• j = 22, Fake Lepton from B0B̄0

• j = 23, Combinatorial with True Lepton from B+B−

• j = 24, Combinatorial with True Lepton from B0B̄0

• j = 25, Combinatorial with Fake Lepton from B+B−

• j = 26, Combinatorial with Fake Lepton from B0B̄0

6.7 Parametrization of B → D(∗)π�ν decay branching

fractions

We parameterize B → D(∗)π�ν decay branching fractions with one total branching

fraction and five branching fraction ratios. First, we define a total branching fraction

B(B+ → D(∗)π�ν)

≡ B(B+ → D̄0
1�

+ν) + B(B+ → D̄∗0
2 �

+ν)

+B(B+ → D̄∗0
0 �

+ν) + B(B+ → D̄′0
1 �

+ν)

+BNR(B+ → D−π+�+ν) + BNR(B+ → D̄0π0�+ν)

+BNR(B+ → D∗−π+�+ν) + BNR(B+ → D̄∗0π0�+ν)

(6.24)

and five branching fraction ratios

fD∗
2/D1 ≡

B(B+ → D̄∗0
2 �

+ν)

B(B+ → D̄0
1�

+ν)
(6.25)

fDπ/D∗
0
≡ BNR(B+ → D−π+�+ν)

B(B+ → D̄∗0
0 �

+ν)
(6.26)



89

fD∗π/D′
1
≡ BNR(B+ → D∗−π+�+ν)

B(B+ → D̄′0
1 �

+ν)
(6.27)

fD∗
0Dπ/D1D∗

2
≡ B(B+ → D̄∗0

0 �
+ν) + BNR(B+ → D−π+�+ν) + BNR(B+ → D̄0π0�+ν)

B(B+ → D̄0
1�

+ν) + B(B+ → D̄∗0
2 �

+ν)

(6.28)

fD′
1D∗π/D1D∗

2
≡ B(B+ → D̄′0

1 �
+ν) + BNR(B+ → D∗−π+�+ν) + BNR(B+ → D̄∗0π0�+ν)

B(B+ → D̄0
1�

+ν) + B(B+ → D̄∗0
2 �

+ν)

(6.29)

The quantity fD∗
2/D1 is the ratio between two narrow states (see Appendix B), fDπ/D∗

0

(fD∗π/D′
1
) is between two broad states decaying to Dπ (D∗π) and the other two ratios

are between broad and narrow states. Individual branching fractions are given by

these six parameters as follows

B(B+ → D̄0
1�

+ν) =
B(B+ → D(∗)π�ν)

(1 + fD∗
2/D1)(1 + fD∗

0Dπ/D1D∗
2
+ fD′

1D∗π/D1D∗
2
)

(6.30)

B(B+ → D̄∗0
2 �

+ν) = fD∗
2/D1B(B+ → D̄0

1�
+ν) (6.31)

B(B+ → D̄∗0
0 �

+ν) =
2fD∗

0Dπ/D1D∗
2
B(B+ → D(∗)π�ν)

(2 + 3fDπ/D∗
0
)(1 + fD∗

0Dπ/D1D∗
2
+ fD′

1D∗π/D1D∗
2
)

(6.32)

B(B+ → D̄′0
1 �

+ν) =
2fD′

1D∗π/D1D∗
2
B(B+ → D(∗)π�ν)

(2 + 3fD∗π/D′
1
)(1 + fD∗

0Dπ/D1D∗
2
+ fD′

1D∗π/D1D∗
2
)

(6.33)

B(B+ → D−π+�+ν) = fDπ/D∗
0
B(B+ → D̄∗0

0 �
+ν) (6.34)

B(B+ → D∗−π+�+ν) = fD∗π/D′
1
B(B+ → D̄′0

1 �
+ν) (6.35)

The corresponding B(B+ → D̄0π0�+ν), B(B+ → D̄∗0π0�+ν) and B0 branching frac-

tions can be obtained by isospin symmetry. For example

B(B+ → D̄∗0π0�+ν) = B(B+ → D∗−π+�+ν)/2

B(B0 → D−
1 �

+ν) = B(B+ → D̄0
1�

+ν)/t+0

(6.36)

where t+0 ≡ τB+/τB0 is the lifetime ratio of B+ and B0.

This parameterization allows us to fit for B(B+ → D(∗)π�ν). However, this

branching fraction is eventually held fixed due to large systematic uncertainties from
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B+ → D(∗)ππ�ν and backgrounds.

6.8 FF parameter fitting technique

6.8.1 B → D�ν slope fitting

As explained in section 4.3, we create additional histograms to fit for B → D�ν slope.

We may rewrite the weight (Equation (5.22))

WMC(w) =

[
(1 − 10z2 + 84z3)

[h+(1)]2

[Rf+]2

−2(1 − 10z2 + 84z3)(8z − 51z2 + 252z3)[h+(1)]2

[Rf+]2
ρ2

D

+
(8z − 51z2 + 252z3)2[h+(1)]2

[Rf+]2
(
ρ2

D

)2
]
RN (6.37)

Hence, if we define three weights W 0(w), W 1(w) and W 2(w) by

WMC(w) ≡
[
W 0(w) −W 1(w)ρ2

D +W 2(w)
(
ρ2

D

)2
]
RN (6.38)

then, the number of events is given by

NMC
ij =

[∑
l

(
rLumi
l

∑
k

rTrk
k rKPID

k rLPID
k W 0

jk

)

−
∑

l

(
rLumi
l

∑
k

rTrk
k rKPID

k rLPID
k W 1

jk

)
ρ2

D

+
∑

l

(
rLumi
l

∑
k

rTrk
k rKPID

k rLPID
k W 2

jk

)(
ρ2

D

)2

]
RN (6.39)

Here the sum of k is taken over peak and sideband separately and sideband is sub-

tracted. This can be expressed by

NMC
ij ≡

[
N0

ij −N1
ijρ

2
D +N2

ij

(
ρ2

D

)2
]
RN (6.40)
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Instead of using B → D�ν histogram NMC
ij , we can use these three histograms, N0

ij,

N1
ij and N2

ij, in our fit. Then we do not have to re-create histograms during the fitting

process. We can create the B → D�ν histogram with a new slope ρ2
D from the three

existing histograms N0
ij , N

1
ij and N2

ij .

6.8.2 Statistical uncertainty

Since our events are weighted, the variance is given by the sum of the squares of the

weights.

∑
k

[
WMC

k (w)
]2

(6.41)

Hence, by taking a square of Equation (6.38), we need 5 histograms to calculate the

variance

σ2 =
[
N1 −N2ρ

2
D +N3

(
ρ2

D

)2 −N4

(
ρ2

D

)3
+N5

(
ρ2

D

)4
]
R2

N (6.42)

6.8.3 B → D∗�ν parameter fitting

A similar method can be adopted for B → D∗�ν decay FF parameter fitting. Since

we have three parameters ρ2, R1 and R2, we need 18 histograms for the B → D∗�ν

distribution and 75 histograms to calculate its statistical uncertainty.
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Chapter 7

Validation of the fitting method

We validate our fit as described in the following sections. BB̄ MC was used for the

validation. We fit electron and muon samples separately because they have different

systematic uncertainties (see chapter 9). Since the electron sample has higher statis-

tics and smaller PID uncertainties, we use only electrons for this validation study.

As can be seen in chapter 10, the two samples give compatible results.

7.1 Fit configuration for validation study

Before starting the full validation study using MC, we performed a variety of test

fits to data to determine the fit configurations which give us an acceptable χ2 and

good stability against changes of input parameters. We tried to determine which

parameters should be held fixed, what constraints needed to be imposed and so on.

Based on test fits, we picked up the following configuration to do full validation study

: we fit four form factor parameters

• B → D�ν decay FF slope : ρ2
D

• B → D∗�ν decay FF slope : ρ2

• B → D∗�ν decay FF ratio : R1

• B → D∗�ν decay FF ratio : R2



93

and two branching fractions

• B(B+ → D̄0�+ν)

• B(B+ → D̄∗0�+ν)

with isospin constraints on B decays. Input parameters are

B(B+ → D̄(∗)π�+ν) = 0.0158

fD∗
2/D1 = 0.66

fD∗
0Dπ/D1D∗

2
= 0.87

fD′
1D∗π/D1D∗

2
= 0.67

fDπ/D∗
0

= 0.19

fD∗π/D′
1

= 0.06

B(B+ → D̄(∗)ππ�+ν) = 0.011

f+0 = 1.065

t+0 = 1.071

(7.1)

7.2 Toy MC study

7.2.1 Method of toy MC study

To validate our fitting method, we perform a toy MC study. The following procedure

is used :

1. Construct fake OnPeak - OffPeak data using fully simulated BB̄ MC, with

input values as shown in Table 7.1.

2. Fluctuate the population of each bin of the fake data using Gaussian random

numbers based on the statistical uncertainty of the bin.

3. Fit the fluctuated fake data.
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Parameters Set a Set b Set c

ρ2
D 1.17 1.3 1.17
ρ2 1.191 1.3 1.191
R1 1.429 1.6 1.429
R2 0.827 0.6 0.827

B(B+ → D̄0�+ν) 0.0233 0.0233 0.025
B(B+ → D̄∗0�+ν) 0.0583 0.0583 0.056

Table 7.1: [Parameters of fake data] The parameter values used to create fake data.
Set b has different FF parameters than set a and set c has different BF values.

4. Iterate steps 2 and 3 approximately 1,000 times.

5. Plot the pull distributions of the 1,000 fits and record the mean and standard

deviation of each distribution.

In Table 7.1, three sets of input parameters are listed; set b has different FF param-

eters than set a, and set c has different B decay BF values. We perform 1,000 toy

fits each for each parameter set.

7.2.2 Pull results

Pulls are calculated by

pull =
fitted value − true value

fitted uncertainty
(7.2)

The mean and standard deviation (r.m.s.) for each pull distribution are listed in

Table 7.2. At the bottom line of the Table the statistical uncertainty on the mean

and standard deviation are listed. The uncertainty on the mean is given by

σ√
N

=
1√
1000

= 0.0316 (7.3)
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Set a Set b Set c
Parameters Mean r.m.s. Mean r.m.s. Mean r.m.s.

ρ2
D +0.0253 1.014 -0.0112 1.017 +0.0329 1.016
ρ2 -0.0755 1.028 -0.0195 1.017 -0.0671 1.023
R1 +0.0303 0.993 -0.1166 0.996 +0.0366 0.995
R2 +0.1079 1.005 +0.0234 0.997 +0.0998 1.004

B(B+ → D̄0�+ν) +0.1477 1.000 +0.1378 1.000 +0.1608 1.006
B(B+ → D̄∗0�+ν) -0.0940 0.977 -0.0263 1.012 -0.1030 1.017

Uncertainty 0.0316 0.0224 0.0316 0.0224 0.0316 0.0224

Table 7.2: [Toy MC pulls : Mean and Standard Deviation] Mean and standard
deviation (r.m.s.) of pull distributions of toy MC. The uncertainty on mean and standard
deviation are also listed in the bottom line. Pulls are calculated from the difference to input
values.

and the uncertainty on the standard deviation is calculated by

σ√
2N

=
1√

2 × 1000
= 0.0224 (7.4)

The χ2 and the pull distributions are shown in Figures 7.1 and 7.2 only for the

parameter Set a. Results show very small biases. We do not correct for these because

they are negligible in comparison with the total uncertainties on these quantities.

7.3 Validation fits using fully simulated MC

7.3.1 Validation fit method

For another validation of our fitting method, we split the MC into two halves. We

use one half to construct fake data. We then create component histograms from the

other half, and fit the fake data using the component histograms. Again, we use the

three different parameter sets given in Table 7.1 to create fake data. We split the

MC four different ways

• Split A : Separate even number events and odd number events.
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toyHist0
Entries  1000

Mean    466.6
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Figure 7.1: [Toy MC χ2 (Set a)] Toy MC χ2 for parameter set a. The number of
degrees of freedom is 468.

• Splits B, C and D : Separate events using three independent sets of random

numbers.

7.3.2 Validation fit results

Fit results are given in Tables 7.3 - 7.5. For each fit, we calculate pulls as defined

in Equation (7.2). We also calculate an overall χ2 between the input and fitted

parameter values, namely

χ2
V al = (∆1,∆2, ...,∆k)

⎛⎜⎜⎜⎜⎝
Inverse

covariance

matrix

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆1

∆2

·
·
·

∆k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.5)
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Figure 7.2: [Toy MC Pulls (Set a)] Toy MC pull distributions for parameter Set a.
Pulls are plotted from top left to bottom right for ρ2

D, ρ2, R1, R2, B(B+ → D̄0�+ν) and
B(B+ → D̄∗0�+ν).
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where ∆i is the difference between fitted and input values of i-th parameter :

∆i = fitted value − true value (7.6)

The results do not show any significant bias.
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parameter fit result

ρ2
D 1.240 ± 0.049
ρ2 1.300 ± 0.052
R1 1.530 ± 0.084
R2 0.730 ± 0.067

B(D̄0�+ν)(%) 2.399 ± 0.037
B(D̄∗0�+ν)(%) 5.444 ± 0.049

χ2/ndof (P-value) 422/468 (0.94)

Table 7.6: [Test fit results] Test fit results on the electron sample.

7.4 Cross Checks

We fit data with the configuration given in section 7.1. The results are given in

Table 7.6. Based on these fit results we perform the following cross check fits to data

as a further validation of the fit. In cross check fits, as an indication of agreement to

test fit results, we calculate normalized residuals (NR) for each variable

NR =
(Cross check fit value) − (Test fit value)

σCrossCheck
(7.7)

7.4.1 Binning

We change the binning and see how the fit results change. The nominal binning is

given in section 6.2.

For alternative lepton momentum binning :

• p∗� Binning 1

(10 bins (GeV)) : 1.2, 1.35, 1.45, 1.55, 1.65, 1.75, 1.85, 1.95, 2.05, 2.15, 2.35)

• p∗� Binning 2

(5 bins (GeV)) : 1.2, 1.4, 1.6, 1.8, 2.0, 2.35

D momentum binning :
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• p∗D Binning 1

(9 bins (GeV)) : 0.8, 1.05, 1.3, 1.45, 1.6, 1.75, 1.9, 2.05, 2.2, 2.45

• p∗D Binning 2

(4 bins (GeV)) : 0.8, 1.2, 1.6, 2.0, 2.45

and cos θB−Dl binning :

• cos θB−Dl Binning 1 (3 bins) : -2, -0.5, 0.5, 1.1

• cos θB−Dl Binning 2 (2 bins) : -2, 0, 1.1

Results are given in Tables 7.7-7.9. The results are consistent with the test fit.

7.4.2 Minimum entries per bin

We change the requirement on the minimum entries per bin to 25, 50, 75 and 100.

In nominal fit it is set to 10. Results are shown in Tables 7.10 and 7.11. The results

show good agreement with the test fit. When we change the requirement, the number

of bins going into χ2 changes as follows

• Minimum entry per bin > 10 : number of bins going into χ2 = 475

• Minimum entry per bin > 25 : number of bins going into χ2 = 464

• Minimum entry per bin > 50 : number of bins going into χ2 = 449

• Minimum entry per bin > 75 : number of bins going into χ2 = 446

• Minimum entry per bin > 100 : number of bins going into χ2 = 439

7.4.3 D mass peak region

We take a wider or narrower D mass peak region by adding or subtracting 2 MeV

at both ends of the region. The results in Table 7.12 show good agreement with the

test fit.
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p∗� binning binning 1 binning 2
Fit result NR Fit result NR

ρ2
D 1.230 ± 0.049 -0.20 1.241 ± 0.049 +0.02
ρ2 1.307 ± 0.052 +0.14 1.318 ± 0.054 +0.34
R1 1.526 ± 0.082 -0.05 1.539 ± 0.086 +0.11
R2 0.693 ± 0.067 -0.16 0.678 ± 0.070 -0.36

B(B+ → D̄0�+ν) 0.02396 ± 0.00037 -0.09 0.02397 ± 0.00037 -0.04
B(B+ → D̄∗0�+ν) 0.05465 ± 0.00049 +0.41 0.05462 ± 0.00049 +0.36
χ2/ndof (P-value) 469/453 (0.29) 237/241 (0.57)

Table 7.7: [Effect of p∗� binning] Fit results with NR (Normalized Residual) for binning
1 (left) and binning 2 (right).

p∗D binning binning 1 binning 2
Fit result NR Fit result NR

ρ2
D 1.224 ± 0.049 -0.33 1.246 ± 0.051 +0.12
ρ2 1.326 ± 0.051 +0.52 1.288 ± 0.057 -0.21
R1 1.548 ± 0.083 +0.22 1.499 ± 0.088 -0.35
R2 0.679 ± 0.066 -0.37 0.732 ± 0.073 +0.39

B(B+ → D̄0�+ν) 0.02399 ± 0.00037 +0.01 0.02410 ± 0.00037 +0.30
B(B+ → D̄∗0�+ν) 0.05457 ± 0.00049 +0.27 0.05434 ± 0.00050 -0.22
χ2/ndof (P-value) 467/483 (0.69) 252/220 (0.07)

Table 7.8: [Effect of p∗D binning] Fit results with NR (Normalized Residual) for binning
1 (left) and binning 2 (right).

cos θB−Dl binning binning 1 binning 2
Fit result NR Fit result NR

ρ2
D 1.207 ± 0.051 -0.65 1.214 ± 0.052 -0.50
ρ2 1.290 ± 0.051 -0.20 1.316 ± 0.053 +0.32
R1 1.516 ± 0.077 -0.18 1.574 ± 0.087 +0.50
R2 0.707 ± 0.063 +0.06 0.674 ± 0.070 -0.42

B(B+ → D̄0�+ν) 0.02367 ± 0.00037 -0.85 0.02381 ± 0.00039 -0.46
B(B+ → D̄∗0�+ν) 0.05482 ± 0.00047 +0.79 0.05453 ± 0.00050 +0.18
χ2/ndof (P-value) 500/498 (0.47) 314/336 (0.81)

Table 7.9: [Effect of cos θB−Dl binning] Fit results with NR (Normalized Residual) for
binning 1 (left) and binning 2 (right).
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> 25 > 50
Fit result NR Fit result NR

ρ2
D 1.240 ± 0.049 +0.01 1.238 ± 0.049 -0.04
ρ2 1.299 ± 0.052 -0.01 1.292 ± 0.052 -0.14
R1 1.529 ± 0.084 -0.01 1.519 ± 0.083 -0.14
R2 0.704 ± 0.067 +0.01 0.712 ± 0.067 +0.13

B(B+ → D̄0�+ν) 0.02399 ± 0.00037 -0.01 0.02398 ± 0.00037 -0.04
B(B+ → D̄∗0�+ν) 0.05444 ± 0.00049 +0.00 0.05445 ± 0.00049 +0.01
χ2/ndof (P-value) 415/457 (0.92) 402/442 (0.92)

Table 7.10: [Effect of minimum candidates per bin > 25 and 50] Fit results with
NR (Normalized Residual).

> 75 > 100
Fit result NR Fit result NR

ρ2
D 1.238 ± 0.049 -0.05 1.243 ± 0.049 +0.06
ρ2 1.294 ± 0.0520 -0.11 1.287 ± 0.053 -0.24
R1 1.520 ± 0.083 -0.12 1.515 ± 0.083 -0.18
R2 0.710 ± 0.067 +0.10 0.716 ± 0.066 +0.19

B(B+ → D̄0�+ν) 0.02398 ± 0.00037 -0.03 0.02396 ± 0.00037 -0.07
B(B+ → D̄∗0�+ν) 0.05446 ± 0.00049 +0.04 0.05444 ± 0.00049 -0.02
χ2/ndof (P-value) 401/439 (0.90) 395/432 (0.90)

Table 7.11: [Effect of minimum candidates per bin > 75 and 100] Fit results with
NR (Normalized Residual).

wider narrower
Fit result NR Fit result NR

ρ2
D 1.201 ± 0.055 -0.71 1.230 ± 0.048 -0.20
ρ2 1.320 ± 0.055 +0.37 1.310 ± 0.052 +0.20
R1 1.562 ± 0.091 +0.35 1.553 ± 0.084 +0.28
R2 0.664 ± 0.073 -0.54 0.670 ± 0.068 -0.49

B(B+ → D̄0�+ν) 0.02392 ± 0.00040 -0.17 0.02389 ± 0.00035 -0.29
B(B+ → D̄∗0�+ν) 0.05465 ± 0.00052 +0.40 0.05448 ± 0.00048 +0.07
χ2/ndof (P-value) 446/468 (0.76) 1.01 462/468 (0.57) 1.21

Table 7.12: [D mass peak region] Fit results with NR (Normalized Residual).
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Parameters Run1-3 result Run4 result NR

ρ2
D 1.174 ± 0.073 1.286 ± 0.066 +1.14
ρ2 1.264 ± 0.070 1.328 ± 0.075 +0.62
R1 1.488 ± 0.108 1.558 ± 0.123 +0.43
R2 0.741 ± 0.087 0.676 ± 0.099 -0.50

B(B → D�ν) 0.02364 ± 0.00051 0.02441 ± 0.00052 +1.05
B(B → D∗�ν) 0.05495 ± 0.00068 0.05380 ± 0.00070 -1.18

χ2/ndof (P-value) 427/457 (0.84) 487/458 (0.17) 4.6/6 (0.59)

Table 7.13: [Run1-3 and Run4 fits] Fit results with NR (Normalized Residual).

7.4.4 Run1-3 vs Run4

Our data were taken in 4 different running periods over the years 2000 to 2004 : Run1,

Run2, Run3 and Run4. We compare the results with the data taken in earlier time

(Run1-3) and later time (Run4). These two data sets have comparable statistics.

The results are give in Table 7.13. The normalized residual (NR) in the Table is

defined by

NR =
(Run4 fitted value) − (Run1-3 fitted value)√

σ2
Run4 + σ2

Run1-3

(7.8)

χ2 for NR is defined by the sum of NR2. Run1-3 and Run4 agree well.
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Chapter 8

Fit results

We perform separate fits to the electron and muon samples. This allows the two sam-

ples to be combined in an optimal way when including both statistical and systematic

errors. This is of the practical importance due to the differences in some systematic

uncertainties such as PID efficiency and radiative corrections. We also fix R1 and R2.

One reason is the precision of these parameters, including systematic uncertainties,

is significantly poorer than the previous BaBar measurement [46]. Another reason is

to facilitate the combination of results on branching fractions and form factor slopes

with previous measurements, all of which are scaled to common values of R1 and R2.

8.1 Nominal fit configuration

In the nominal fit, we determine two form factor slopes

• B → D�ν decay FF slope : ρ2
D

• B → D∗�ν decay FF slope : ρ2

and two branching fractions

• B(B+ → D̄0�+ν)

• B(B+ → D̄∗0�+ν)
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Isospin symmetry is imposed on semileptonic B decays in the fit.

The input parameters are

R1 = 1.429 ± 0.061 ± 0.044

R2 = 0.827 ± 0.038 ± 0.022

B(B+ → D̄(∗)π�+ν) = 0.0151 ± 0.0015

fD∗
2/D1 = 0.74 ± 0.20

fD∗
0Dπ/D1D∗

2
= 0.87 ± 0.43

fD′
1D∗π/D1D∗

2
= 0.68 ± 0.25

fDπ/D∗
0

= 0.21 ± 0.21

fD∗π/D′
1

= 0.07 ± 0.07

B(B+ → D̄(∗)ππ�+ν) = 0.011 ± 0.011

f+0 = 1.065 ± 0.026

t+0 = 1.071 ± 0.009

(8.1)

The R1 and R2 values are taken from a previous BaBar measurement [46]. f+0 and

t+0 values are adopted from the PDG [10]. B(B+ → D̄(∗)π�+ν) is given by an average

of [10] and [11] with isospin constraints. Calculations of other input parameters are

explained in the following sub-section.

8.1.1 Calculation of input parameters

In this sub-section, we explain the calculation of some of the input parameters listed

above.

B → D∗∗�ν decay branching fractions

From HFAG [36]

B(B+ → D̄0
1�

+ν)B(D0
1 → D∗+π−) = 0.0024 ± 0.0004

B(B+ → D̄∗0
2 �

+ν)B(D∗0
2 → D∗+π−) = 0.0009 ± 0.00025

(8.2)
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BaBar measures [49]

B(B+ → D̄0
1�

+ν)B(D0
1 → D∗+π−) = 0.00297 ± 0.00017 ± 0.00018

B(B+ → D̄∗0
2 �

+ν)B(D∗0
2 → D(∗)+π−) = 0.00229 ± 0.00023 ± 0.00020

B(B0 → D−
1 �

+ν)B(D−
1 → D∗0π−) = 0.00278 ± 0.00024 ± 0.00026

B(B0 → D∗−
2 �+ν)B(D∗−

2 → D(∗)0π−) = 0.00177 ± 0.00026 ± 0.00011

(8.3)

We take the isospin average of these results assuming maximum correlation between

total errors. BaBar also measures [50]

B(B+ → D̄0
1�

+ν)B(D0
1 → D∗+π−) = 0.0029 ± 0.0003 ± 0.0003

B(B+ → D̄∗0
2 �

+ν)B(D∗0
2 → D+π−) = 0.0012 ± 0.0002 ± 0.0001

B(B+ → D̄′0
1 �

+ν)B(D′0
1 → D∗+π−) = 0.0030 ± 0.0003 ± 0.0004

B(B+ → D̄∗0
0 �

+ν)B(D∗0
0 → D+π−) = 0.0032 ± 0.0004 ± 0.0004

(8.4)

Using fD∗
2

given in Equation (5.6), we combine the results given in the previous three

equations to obtain

B(B+ → D̄0
1�

+ν) = 0.0042 ± 0.00044

B(B+ → D̄∗0
2 �

+ν) = 0.0031 ± 0.0005

B(B+ → D̄′0
1 �

+ν) = 0.0045 ± 0.00075

B(B+ → D̄∗0
0 �

+ν) = 0.0048 ± 0.00085

(8.5)

The sum of these 4 branching fractions is

B(B+ → D̄∗∗0�+ν) = 0.0166 ± 0.0022 (8.6)
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Non-resonant B → D(∗)π�ν decay branching fractions

The comparison of Equation (8.6) with the B → D(∗)π�ν BF quoted in Equation

(8.1) provides an estimate of the non-resonant BNR(B+ → D̄(∗)π�+ν) component :

B(B+ → D(∗)π�+ν) − B(B+ → D̄∗∗0�+ν) = −0.0020 ± 0.0043 (8.7)

The non-resonant branching fractions have never been measured. The values usually

assumed in BaBar are

BNR(B+ → D−π+�+ν) = 0.0040 ± 0.0024

BNR(B+ → D̄0π0�+ν) = 0.0020 ± 0.0012

BNR(B+ → D∗−π+�+ν) = 0.0012 ± 0.0008

BNR(B+ → D̄∗0π0�+ν) = 0.0006 ± 0.0004

(8.8)

However these sum to 0.0078. Thus we shrink them keeping the same D∗/D ratio

BNR(B+ → D−π+�+ν) = 0.0010 ± 0.0010

BNR(B+ → D̄0π0�+ν) = 0.0005 ± 0.0005

BNR(B+ → D∗−π+�+ν) = 0.0003 ± 0.0003

BNR(B+ → D̄∗0π0�+ν) = 0.00015 ± 0.00015

(8.9)

We assign 100 % uncertainties since these branching fractions have never been mea-

sured. We vary the D∗/D ratio when evaluating systematic errors.

Branching fraction ratios

We calculate the branching fraction ratios, discussed in section 6.7, by assuming the

errors on the branching fractions given above are 100 % correlated. Results are given

in Equation (8.1)
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B → D(∗)ππ�ν decay branching fraction

From the PDG [10], the inclusive semileptonic BF is

B(B+ → Xc�
+ν) = 0.108 ± 0.004 (8.10)

BaBar measure [11]

B(B+ → D̄0�+ν) = 0.0233 ± 0.0009 ± 0.0009

B(B+ → D̄∗0�+ν) = 0.0583 ± 0.0015 ± 0.0030

B(B+ → D(∗)π�+ν) = 0.0152 ± 0.0012 ± 0.0010

(8.11)

Thus 0.108 - 0.0233 - 0.0583 - 0.0152 = 0.0112 is missing. We set

B(B+ → D(∗)ππ�+ν) = 0.011 ± 0.011 (8.12)

As we assign 100 % uncertainty, this covers systematic uncertainty from this unmea-

sured decay BF.

8.2 Fit results

The fit results are shown in Table 8.1. The fits to the electron and muon samples both

give good χ2 probabilities. The comparison of the parameter values from the two fits

is made in chapter 10 after systematic uncertainties are considered. Correlations are

given in Table 8.2. There are no dangerously large correlations. Projection plots

onto the lepton momentum, D momentum and cos θB−Dl after fitting are given in

Figures 8.1 - 8.3. The ratio plots show good agreement between data and fit results.

Figure 8.4 shows all bins for the electron sample. The binning is given in section 6.2.
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Parameters Electron fit Muon fit

ρ2
D 1.268 ± 0.033 1.165 ± 0.062

ρ2
D∗ 1.221 ± 0.025 1.231 ± 0.029

B(D̄0�+ν)(%) 2.426 ± 0.033 2.298 ± 0.038
B(D̄∗0�+ν)(%) 5.373 ± 0.033 5.184 ± 0.037

χ2/ndof (P-value) 424/470 (0.94) 496/466 (0.16)

Table 8.1: [Nominal fit results] Fit results on the electron and muon samples.

Electron sample Muon sample
ρ2

D ρ2
D∗ B(D) B(D∗) ρ2

D ρ2
D∗ B(D) B(D∗)

ρ2
D 1 1

ρ2
D∗ −0.305 1 −0.310 1

B(D) +0.301 +0.177 1 +0.272 +0.195 1
B(D∗) −0.386 +0.077 −0.528 1 −0.394 +0.073 −0.521 1

Table 8.2: [Statistical correlation coefficients] Correlations between parameters.
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Figure 8.1: [p� (Nominal fit)] Data and fit results onto the lepton momentum. The
left column is for the electron sample and the right column is for the muon sample. The
top row is D0� and the bottom row is D+�. Black points are OnPeak - OffPeak data.
The red histogram is B → D�ν, green is B → D∗�ν, blue is B → D(∗)π�ν, magenta is
B → D(∗)ππ�ν, and brown is background.
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Figure 8.2: [pD (Nominal fit)] Data and fit results onto the D momentum. The
left column is for the electron sample and the right column is for the muon sample. The
top row is D0� and the bottom row is D+�. Black points are OnPeak - OffPeak data.
The red histogram is B → D�ν, green is B → D∗�ν, blue is B → D(∗)π�ν, magenta is
B → D(∗)ππ�ν, and brown is background.
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Figure 8.3: [cos θB−Dl (Nominal fit)] Data and fit results onto the cos θB−Dl. The
left column is for the electron sample and the right column is for the muon sample. The
top row is D0� and the bottom row is D+�. Black points are OnPeak - OffPeak data.
The red histogram is B → D�ν, green is B → D∗�ν, blue is B → D(∗)π�ν, magenta is
B → D(∗)ππ�ν, and brown is background.
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Figure 8.4: [All bin plots (Nominal fit)] Data and fit results showing all bins for the
electron sample. The left three columns are for the D0e sample and the right three columns
are for the D+e sample. The tree columns correspond to the three bins of cos θB−Dl. The
ten rows correspond to the ten bins of p�. The eight bins in each plot correspond to the
eight bins of pD. The binning is given in section 6.2. Black points are OnPeak - OffPeak
data. The red histogram is B → D�ν, green is B → D∗�ν, blue is B → D(∗)π�ν and
B → D(∗)ππ�ν, and brown is background. Note that the y-axis range varies plot by plot.



116

Chapter 9

Systematic Uncertainties

Systematic uncertainties are evaluated by varying assumptions, such as form factor

models and detector modeling, and input values in the fit. We keep track of the sign

of the deviations caused by varying inputs; systematic errors are negative when the

corresponding fitted values decrease as an assumption is changed or a input parameter

increases. When we vary input parameters by ±1σ, we take the larger deviation as

a systematic error. There are a few exceptions and details are given in the following

sections. The resulting systematic uncertainties are shown in Tables 9.1 and 9.2.

9.1 Form factors

9.1.1 R1 and R2

We use R1 and R2 as input

R1 = 1.429, σ1 =
√

0.0612 + 0.0442 = 0.075

R1 = 0.827, σ2 =
√

0.0382 + 0.0222 = 0.044

correlation : ρ12 = −0.84

(9.1)
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The associated error matrix is given by

M =

⎛⎜⎝ σ2
1 σ1σ2 ρ12

σ1σ2 ρ12 σ2
2

⎞⎟⎠ (9.2)

We transform variables (R1, R2) to (y1, y2) to diagonalize the error matrix. Then we

vary y1 and y2 independently to estimate the systematic uncertainty due to R1 and

R2. The variation of y1 gives (R1,R2) set A :

δR1 = ±0.075, δR2 = ∓0.040 (9.3)

and the variation of y2 gives (R1,R2) set B :

δR1 = ±0.010, δR2 = ∓0.019 (9.4)

9.1.2 B → D∗∗�ν decay form factors

There are two sources of systematic uncertainty from D∗∗ form factors :

• FF slope : τ̃ ′ = −1.5 ± 0.5

• Approximation B1; we take Approximation B2 as an alternative.

The slope range is what recommended in the LLSW paper [47].

9.2 Effect of B → D(∗)π�ν decays

9.2.1 B(B+ → D(∗)π�ν)

As described in section 8, we use

• B(B+ → D(∗)π�ν) = 0.0151 ± 0.0015

9.2.2 BF ratios

We have five BF ratios as input (see section 8):
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• fD∗
2/D1 = 0.74 ± 0.20

• fD∗
0Dπ/D1D∗

2
= 0.87 ± 0.43

• fD′
1D∗π/D1D∗

2
= 0.68 ± 0.25

• fDπ/D∗
0

= 0.21 ± 0.21

• fD∗π/D′
1

= 0.07 ± 0.07

We vary these ratios independently in evaluating systematic uncertainties.

9.2.3 Non-resonant B → D(∗)π�ν decay BF

Non-resonant B → D(∗)π�ν decay BFs are not well measured. Thus we assign 100 %

uncertainty on these BF, which is covered by above BF ratios. We also need to change

the ratio fD∗π/Dπ ≡ BNR(B+ → D∗−π+�+ν)/BNR(B+ → D−π+�+ν). In nominal fit

this ratio is set to 0.3.

• We change the ratio fD∗π/Dπ to 0.1 and 1.0

9.3 Effect of B → D(∗)ππ�ν decays

9.3.1 B → D(∗)ππ�ν decay BF

As described in section 8, we assign 100 % uncertainty on this BF

• B(B+ → D(∗)ππ�ν) = 0.011 ± 0.011

9.3.2 Modeling

In nominal fit we combine X, X∗, Y and Y ∗ with equal rates. To evaluate systematic

uncertainty, we vary these ratios

• Vector - scalar ratio

We change X∗/X and Y ∗/Y to 2 and 0.5
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• X - Y ratio

We change X/Y and X∗/Y ∗ to 2 and 0.5

B → D(∗)ππ�ν decays may include B → D1�ν (a mix of D1 → D(∗)ππ and

D1 → D(∗)η) decays. Thus,

• We replace the half of nominal X, X∗, Y and Y ∗ by D1

9.4 Input parameters

As described in section 5.2.1, we have one parameter to calculate the D∗
2 decay

branching fractions :

• fD∗
2

= 1.7 ± 0.4

Other input parameters are

• B(D∗+ → D0π+) = 0.677 ± 0.005

• B(D0 → K−π+) = 0.03912 ± 0.00048

• B(D+ → K−π+π+) = 0.0915 ± 0.0020

• t+0 ≡ τB+

τB0
= 1.071 ± 0.009

• f+0 ≡ f+−
f00

= 1.065 ± 0.026

9.4.1 Luminosity normalization

For BB̄ MC

• There is 1.1 % uncertainty (statistical + systematic).

For OffPeak data

• There is 0.25 % uncertainty.
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9.5 Various corrections

9.5.1 Beam energy re-weighting

The measured OnPeak beam energy (mean) has an uncertainty of 0.2 MeV.

9.5.2 Electron PID efficiency

The following weight, wf , approximates the correction to the PID weights due to the

presence of other tracks and photons in the event.

• wf = 0.966 (for p� < 1.0 GeV)

• wf = 0.921 + 0.056p� − 0.011p2
� (for 1.0 < p� < 2.5 GeV)

• wf = 0.993 (for p� > 2.5 GeV)

where p� is the electron momentum. We take 50 % of the difference between applying

these additional weights and not applying them as systematic error.

9.5.3 Muon PID efficiency

We evaluate muon PID efficiency systematic uncertainty from two sources :

• Effect on the shape of the histograms entering the fit

We evaluate this by fitting without the PID correction but keeping the same

average PID efficiency.

• Overall efficiency scale

We take 4 % uncertainty on muon PID efficiency.

9.5.4 Lepton PID fake rate

We increase and decrease the fake rate correction factors by 15 %.

9.5.5 Kaon PID correction

We take the difference between the fit results with and without kaon PID correction

as a systematic error.
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9.5.6 Tracking efficiency correction

We take the difference between the fit results with and without tracking efficiency

correction as a systematic error.

9.5.7 Radiative corrections : PHOTOS

We study the effect of radiative corrections at the event generator level by comparing

MC generated with and without PHOTOS. PHOTOS [51] is the software used to

calculate QED radiative corrections in our MC.

1. We generate B → Xc�ν events with and without PHOTOS.

2. We produce 3D histograms as we do in our analysis with the above generated

MC.

3. We divide the above histograms, bin by bin, to produce the ratio histograms.

4. We multiply the corresponding histograms used in the nominal fit by the off/on

ratio histograms to get histograms without radiative corrections, which we use

to fit the data.

We take 25 % of the differences in the fit results as systematic uncertainties. Us-

ing 25 % is consistent with the procedure used in previous BaBar analysis, and is

based roughly on a comparison of PHOTOS with a dedicated matrix element calcu-

lation [52].

9.5.8 Bremsstrahlung

Due to emission of bremsstrahlung photons, the electron loses energy when traveling

through the detector material. Since the amount of detector material is not known

exactly, the effect due to Bremsstrahlung also has uncertainty. This was studied in

detail in [53]. We apply this method in our fitting. First, we create 3D histograms

corresponding to more and less detector material. Then, we compare fit results.
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9.5.9 Vertexing

The vertexing cut is described in the event selection in chapter 3. Nominal cuts are

PD(χ2, dof) > 0.001

PB(χ2, dof) > 0.01
(9.5)

To evaluate the systematic uncertainty of these cuts, we change them to one step

looser cuts

PD(χ2, dof) > 0.0001

PB(χ2, dof) > 0.001
(9.6)

The differences between fit results are smaller than the statistical uncertainties. Thus,

the differences could be just statistical fluctuation. However, we take a conservative

approach and quote the differences as systematic uncertainties.
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item ρ2
D ρ2 B(D0�ν) B(D∗0�ν)

(R1,R2) set A 0.41 2.62 0.64 -0.37
(R1,R2) set B -0.37 1.04 -0.18 0.30
D∗∗ slope -1.08 -2.66 -0.10 -0.10
D∗∗ B2 -0.83 0.59 -0.11 0.20
FF total 1.47 3.92 0.68 0.53

B(B+ → D(∗)π�ν) 0.42 -0.37 -0.10 -0.88
fD∗

2/D1 -0.31 0.14 -0.33 0.14
fD∗

0Dπ/D1D∗
2

-2.11 1.17 -1.51 0.98
fD∗

1D∗π/D1D∗
2

1.08 -0.70 0.82 -0.45
fDπ/D∗

0
-0.73 -1.14 0.30 0.15

fD∗π/D∗
1

-0.18 -0.05 -0.12 0.19
NR D∗/D ratio 0.68 -0.14 0.26 -0.16
D(∗)π�ν total 2.63 1.83 1.80 1.43

B(B+ → D(∗)ππ�ν) 1.14 -2.04 0.25 -1.30
X∗/X and Y ∗/Y ratio 0.58 -1.18 0.09 -0.28
X/Y and X∗/Y ∗ ratio 0.72 -0.85 0.21 -0.66
D1 → Dππ 2.09 -1.60 0.74 -1.09
D(∗)ππ�ν total 2.56 2.97 0.82 1.84
fD∗

2
-0.11 -0.01 -0.08 0.06

D∗+ BF 0.67 -0.01 0.42 -0.34
D+ BF -1.27 -0.40 -2.03 0.30
D0 BF 0.62 0.01 -0.21 -1.57
t+0 0.22 0.17 0.61 0.27
f+0 0.81 0.43 0.63 -0.54
MC Luminosity 0.00 -0.00 -1.11 -1.111
OffPeak Luminosity 0.05 0.01 -0.02 -0.00
Input parms total 1.78 0.61 2.52 2.07
Beam energy -0.87 0.63 1.28 -0.55
Lepton PID eff 0.47 0.17 1.20 0.83
Lepton PID Fake 0.03 0.01 -0.01 -0.01
Kaon PID 0.07 0.83 0.27 0.24
Tracking eff -0.89 -0.46 -3.29 -2.02
PHOTOS -2.94 -1.08 -2.89 -0.71
Bremsstrahlung 0.07 -0.00 -0.13 -0.29
Vertexing 0.79 -0.67 0.63 0.60
Corrections total 3.33 1.72 4.77 2.46
Background total 1.32 1.12 0.63 0.34

Total 5.62 5.67 5.82 4.02

Table 9.1: [Systematics : Electron fit] Systematic uncertainties for the electron
sample. Numbers are given in %.
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item ρ2
D ρ2 B(D0�ν) B(D∗0�ν)

(R1,R2) set A 0.45 2.70 0.73 -0.40
(R1,R2) set B -0.42 0.97 -0.19 0.30
D∗∗ slope -1.00 -2.75 -0.12 -0.12
D∗∗ B2 -0.98 0.62 -0.13 0.22
FF total 1.53 4.02 0.77 0.56

B(B+ → D(∗)π�ν) 0.77 -0.44 -0.01 -0.96
fD∗

2/D1 -0.40 0.15 -0.36 0.16
fD∗

0Dπ/D1D∗
2

-2.85 1.28 -1.52 1.04
fD∗

1D∗π/D1D∗
2

1.42 -0.72 0.85 -0.50
fDπ/D∗

0
-0.70 -1.10 0.27 0.17

fD∗π/D∗
1

-0.26 -0.04 -0.14 0.21
D∗/D ratio 0.82 -0.13 0.27 -0.17
D(∗)π�ν total 3.48 1.90 1.82 1.54

B(B+ → D(∗)ππ�ν) 1.85 -1.78 0.40 -1.22
X∗/X and Y ∗/Y ratio 0.69 -1.04 0.08 -0.25
X/Y and X∗/Y ∗ ratio 1.02 -0.79 0.25 -0.64
D1 → Dππ 2.57 -1.54 0.75 -1.08
D(∗)ππ�ν total 3.40 2.69 0.89 1.77
fD∗

2
-0.13 -0.01 -0.09 0.06

D∗+ BF 0.73 -0.01 0.40 -0.34
D+ BF -1.22 -0.41 -1.96 0.27
D0 BF 0.82 0.10 -0.27 -1.61
t+0 0.19 0.17 0.57 0.28
f+0 0.82 0.49 0.54 -0.53
MC Luminosity 0.01 -0.00 -1.11 -1.11
OffPeak Luminosity 0.07 0.01 -0.02 -0.00
Input parms total 1.84 0.67 2.43 2.10
Beam energy 1.19 -0.09 1.25 -0.66
Lepton PID shape -3.13 0.05 2.99 4.12
Lepton PID scale 0.09 -0.07 -4.11 -4.17
Lepton PID Fake 2.48 0.72 -0.58 -0.51
Kaon PID 0.96 0.72 0.34 0.29
Tracking eff -0.50 -0.31 -3.31 -2.11
PHOTOS -0.71 -0.62 -0.82 -0.24
Bremsstrahlung 0.00 0.00 0.00 0.00
Vertexing 1.66 -0.78 0.95 0.54
Corrections total 4.67 1.47 6.35 6.32
Background total 1.54 1.10 0.68 0.38

Total 7.32 5.55 7.17 7.09

Table 9.2: [Systematics : Muon fit] Systematic uncertainties for the muon sample.
Numbers are given in %.
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9.6 Background

As described in chapter 5, we re-weight branching fractions of background compo-

nents. We change those BF by ± one standard deviation and take larger deviations

as systematic uncertainties. Results are listed in Tables 9.3 and 9.4. We use dif-

ferent methods for inclusive B → D decay BFs and correlated cascade B → D(∗)τν

background as explained in the following subsection.

9.6.1 D momentum dependent inclusive B → D(Ds) BF re-weighting

As described in section 5.1.3, we fit the D (Ds) momentum dependent weights with

a 4-th (3-rd) order polynomial, and we use the fitted function to re-weight the MC.

To estimate the systematic uncertainty due to the uncertainty on weights, we use the

following procedure :

1. We fluctuate each weight using Gaussian random numbers.

2. We fit the distribution of weights using a 4-th (3-rd) order polynomial.

3. We re-weight the MC using the fitted function to create 3D histograms.

4. Using the histograms, we perform fitting.

5. We iterate steps 1 to 4 100 times.

6. We record the standard deviation of the set of fits as a systematic uncertainty.

To estimate the systematic uncertainty due to the choice of fit functions, we re-weight

the MC with following two alternatives :

• Use a 7-th (4-th) order polynomial for fitting the D (Ds) momentum dependent

weights.

• Use the binned weights without fitting.
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item ρ2
D ρ2 B(D0�ν) B(D∗0�ν)

B → D weight error 1.25 0.93 0.45 0.27
B → D different fit -0.15 -0.07 -0.09 -0.05
B → D no fit -0.35 -0.60 -0.42 -0.14

B → D BF total 1.31 1.11 0.63 0.31
D0 → K∗−�ν -0.01 -0.01 -0.01 -0.00
D0 → K−�ν -0.05 -0.02 -0.02 -0.00
D0 → π−�ν -0.02 -0.00 -0.01 -0.00
D0 → ρ−�ν -0.01 -0.00 -0.00 -0.00
D+ → K∗0�ν -0.01 -0.01 -0.01 -0.00
D+ → K0�ν -0.10 -0.03 -0.05 -0.00
D+ → π0�ν -0.02 -0.01 -0.01 -0.00
D+ → ρ0�ν -0.00 -0.00 -0.00 -0.00
D+ → ω�ν -0.00 -0.00 -0.00 -0.00
D+

s → φ�ν -0.00 0.00 -0.00 -0.00
D+

s → η�ν -0.03 0.06 -0.00 -0.01
D+

s → η′�ν -0.00 0.00 -0.00 -0.00
B+ → X̄0�+ν -0.05 -0.10 -0.04 -0.01
B0 → X−�+ν -0.09 -0.09 -0.05 -0.02
CascL Tau -0.03 -0.02 0.01 -0.15

Other bkg total 0.16 0.15 0.09 0.15

Background total 1.32 1.12 0.63 0.34

Table 9.3: [Systematics : Backgrounds (Electron fit)] Background systematic
uncertainties for the electron sample. Numbers are given in %.

9.6.2 Correlated cascade B → D(∗)τν background

Measurements of B → D(∗)τν decay branching fractions have uncertainties up to

30 % [54, 55]. Thus we vary the total amount of correlated cascade B → D(∗)τν

background by 30 %. The contribution of these decays to other backgrounds is small

and the effect on fit results is negligible.

9.7 Systematic Covariance Matrix

We construct a covariance matrix to keep track of correlations between systematic

uncertainties. When we estimate systematic uncertainty, we vary the value of a

quantity (k-th source of systematic uncertainty) and take differences, ∆sys, between
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item ρ2
D ρ2 B(D0�ν) B(D∗0�ν)

B → D weight error 1.40 0.93 0.44 0.27
B → D different fit -0.39 -0.07 -0.20 -0.00
B → D no fit -0.34 -0.52 -0.42 -0.11

B → D BF total 1.49 1.07 0.64 0.29
D0 → K∗−�ν -0.06 -0.05 -0.04 -0.04
D0 → K−�ν -0.11 -0.06 -0.06 -0.05
D0 → π−�ν -0.06 -0.05 -0.04 -0.04
D0 → ρ−�ν -0.04 -0.04 -0.03 -0.04
D+ → K∗0�ν -0.05 -0.04 -0.04 -0.04
D+ → K0�ν -0.24 -0.08 -0.11 -0.05
D+ → π0�ν -0.06 -0.05 -0.04 -0.04
D+ → ρ0�ν -0.04 -0.04 -0.03 0.04
D+ → ω�ν -0.04 -0.04 -0.03 0.04
D+

s → φ�ν -0.18 0.12 -0.07 -0.09
D+

s → η�ν -0.05 0.10 0.04 -0.06
D+

s → η′�ν -0.03 0.04 0.03 -0.04
B+ → X̄0�+ν -0.08 -0.12 -0.05 -0.06
B0 → X−�+ν -0.14 -0.13 -0.08 -0.06
CascL Tau 0.05 -0.00 0.05 -0.16

Other bkg total 0.39 0.28 0.21 0.25

Background total 1.54 1.10 0.68 0.38

Table 9.4: [Systematics : Backgrounds (Muon fit)] Background systematic uncer-
tainties for the muon sample. Numbers are given in %.
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Electron sample Muon sample
ρ2

D ρ2
D∗ B(D) B(D∗) ρ2

D ρ2
D∗ B(D) B(D∗)

ρ2
D 1

ρ2
D∗ −0.03 1

B(D) +0.74 +0.11 1
B(D∗) −0.21 +0.37 +0.33 1
ρ2

D +0.73 −0.19 +0.44 −0.35 1
ρ2

D∗ −0.07 +0.98 −0.04 +0.31 −0.15 1
B(D) +0.44 +0.02 +0.62 +0.18 +0.12 −0.01 1
B(D∗) −0.17 +0.19 +0.13 +0.53 −0.49 +0.17 +0.69 1

Table 9.5: [Systematic correlation coefficients] Correlations between parameters.

fitted values and nominal values of parameters. For i-th parameter

∆sys
ik = (fitted value - nominal value) of i-th parameter (9.7)

Then, the ij element of a systematic error matrix is given by

covsys
ij =

∑
k

∆sys
ik · ∆sys

jk (9.8)

In cases where we do two fits (one with a + variation and the other with a - variation),

we take larger deviation. Systematic correlation coefficients are given in Table 9.5.
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Chapter 10

Electron and Muon Combined Results

10.1 Method to combine electron and muon results

We combine electron and muon results by minimizing a χ2. We put fit results given

in Table 8.1 into a vector xi (i = 0− 3 for electron and i = 4− 7 for muon). We sum

statistical and systematic covariance matrices to get a full 8 × 8 covariance (error)

matrix, M(err)ij. The corresponding correlation matrices are shown in Tables 8.2

and 9.5. Setting y0 = y4 = ρ2
D, y1 = y5 = ρ2, y2 = y6 = B(D�ν) and y3 = y7 =

B(D∗�ν), χ2 is given by

χ2 =
∑
i,j

(yi − xi)M(err)−1
ij (yj − xj) (10.1)

where M(err)−1
ij is the inverse error matrix. The χ2 is minimized to solve for the four

parameters : ρ2
D, ρ2, B(D�ν) and B(D∗�ν).

10.1.1 Determination of statistical uncertainty

The combined fit described above produces only total uncertainties of the fit parame-

ters. In order to determine the purely statistical uncertainties, we fit to the combined
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lepton sample. The results are

ρ2
D = 1.234 ± 0.037, ρ2 = 1.236 ± 0.019

B(D�ν) = (2.359 ± 0.025)%, B(D∗�ν) = (5.271 ± 0.025)%
(10.2)

We take these statistical errors as the ones for the combined fit. This is also a geed

cross-check for the combined results given in Table 10.1.

10.2 Electron and Muon combined fit results

The fit results are given in Table 10.1 along with electron and muon separated results.

Correlations are shown in Table 10.2. We calculate G(1)|Vcb| and F(1)|Vcb| from the

fit results

G(1)|Vcb| = (44.1 ± 0.8 ± 2.2) × 10−3

F(1)|Vcb| = (35.6 ± 0.2 ± 1.2) × 10−3
(10.3)

with correlations

G(1)|Vcb| and F(1)|Vcb| : −0.05

G(1)|Vcb| and ρ2
D : +0.63 (10.4)

F(1)|Vcb| and ρ2 : +0.56

Using these results and values in Equations (4.15) and (4.16), we extract |Vcb|

G(1) ⇒ |Vcb| = (40.8 ± 0.8 ± 2.1 ± 0.9) × 10−3

F(1) ⇒ |Vcb| = (38.3 ± 0.2 ± 1.3 ± 0.9) × 10−3
(10.5)
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Parameters Electron fit Muon fit combined result

ρ2
D 1.27 ± 0.05 ± 0.07 1.16 ± 0.06 ± 0.09 1.23 ± 0.04 ± 0.07
ρ2 1.22 ± 0.02 ± 0.07 1.23 ± 0.03 ± 0.07 1.21 ± 0.02 ± 0.07

B(D̄0�+ν)(%) 2.43 ± 0.03 ± 0.14 2.30 ± 0.04 ± 0.16 2.38 ± 0.03 ± 0.12
B(D̄∗0�+ν)(%) 5.37 ± 0.03 ± 0.21 5.18 ± 0.04 ± 0.36 5.32 ± 0.02 ± 0.21

χ2/ndof (P-value) 424/470 (0.94) 496/466 (0.16) 2.1/4 (0.71)

Table 10.1: [Combined fit results] Fit results on the electron and muon samples and
the combined results.

ρ2
D ρ2 B(D0�ν) B(D∗0�ν)

ρ2
D 1
ρ2 -0.141 1

B(D0�ν) +0.594 +0.051 1
B(D∗0�ν) -0.286 +0.322 +0.307 1

Table 10.2: [Combined fit correlation coefficients] Correlations between parameters
of combined fit.

where the third errors correspond to the theory errors on G(1) and F(1). We also

calculate the ratio G(1)/F(1) to compare directly with theory (lattice QCD)

Measured : G(1)/F(1) = 1.24 ± 0.09 (10.6)

Theory : G(1)/F(1) = 1.16 ± 0.04 (10.7)

where we assumed the theory errors on G(1) and F(1) are independent. The measured

ratio is consistent with the predicted ratio.
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Chapter 11

Discussion

The form factor slopes and branching fractions agree with the world average [36],

which is

ρ2
D = 1.17 ± 0.18

ρ2 = 1.17 ± 0.05

B(B+ → D̄0�ν) = (5.53 ± 0.31)%

B(B+ → D̄∗0�ν) = (2.32 ± 0.13)%

(11.1)

We added one more contribution to B(B+ → D̄∗0�ν). The value of this branching

fraction seems to be converging. We give an average of recent BaBar measurements

below. The precision of our D slope, ρ2
D, is twice as good as the world average.

As our fit gives good χ2 by adding B → D(∗)ππ�ν component, this suggests that

there is a missing component other than B → D�ν, B → D∗�ν and B → D(∗)π�ν.

This also suggests that the missing component has similar kinematic properties to

B → D(∗)ππ�ν decays.
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11.1 Combined BaBar results

There are three recent BaBar measurements of B → D(∗)�ν decays. Ref. [46] recon-

structs B0 → D∗−�+ν� decays and measures

F(1)|Vcb| = (34.4 ± 0.3 ± 1.1) × 10−3

ρ2 = 1.191 ± 0.048 ± 0.028

B(B0 → D∗−�+ν�) = (4.69 ± 0.04 ± 0.34)%

(11.2)

Ref. [56] reconstructs B− → D∗0e−ν̄e decays and obtains

F(1)|Vcb| = (35.9 ± 0.6 ± 1.4) × 10−3

ρ2 = 1.16 ± 0.06 ± 0.08

B(B− → D∗0e−ν̄e) = (5.56 ± 0.08 ± 0.41)%

(11.3)

Ref. [11] fully reconstructs one B and looks at the other B decaying semileptonically.

It quotes

B(B− → D0�ν̄) = (2.33 ± 0.09 ± 0.09)%

B(B− → D∗0�ν̄) = (5.83 ± 0.15 ± 0.30)%

B(B̄0 → D+�ν̄) = (2.21 ± 0.11 ± 0.12)%

B(B̄0 → D∗+�ν̄) = (5.49 ± 0.16 ± 0.25)%

(11.4)

The global fit results are consistent with these results. The F(1)|Vcb| versus ρ2 are

plotted in Figure 11.1 to show the good agreement between BaBar results.

We combine results from the three previous BaBar analysis with the global fit

results. We impose isospin symmetry to previous results, and rescale previous results

using new values for f+0 and charm decay branching fractions if applicable. Ref. [46]

and Ref. [56] are statistically independent. Ref. [11] use one B fully reconstruct

sample and statistical overlap with others are expected to be small. The global fit

is a large superset of others and have very small statistical errors. Thus, statistical



134

rho^2
1 1.1 1.2 1.3 1.4

F
(1

)|
V

cb
|

32

33

34

35

36

37

38

39

F(1)|Vcb| vs rho^2F(1)|Vcb| vs rho^2

Figure 11.1: [F(1)|Vcb| vs ρ2] Comparison of BaBar measurements of F(1)|Vcb| and ρ2.
The red is global fit, green is Ref. [46] and blue is Ref. [56].

correlations between 4 analysis is negligible. We categorize systematic uncertainties

into detector effects, background, R2 and R2, D
0 decay BF and so on, and assume

maximum correlation in each category between 4 analysis. The combined results are

B(B− → D0�ν̄) = (2.36 ± 0.09)%

B(B− → D∗0�ν̄) = (5.46 ± 0.20)%

ρ2 = 1.20 ± 0.04

F(1)|Vcb| = (34.8 ± 0.8) × 10−3

(11.5)

with χ2 probabilities 0.96, 0.16, 0.90 and 0.53, respectively. The χ2 probabilities

show that four BaBar measurements agree well.
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Parameters Electron fit Muon fit combined result

ρ2
D 1.25 ± 0.05 ± 0.09 1.14 ± 0.07 ± 0.09 1.19 ± 0.04 ± 0.07
ρ2 1.32 ± 0.05 ± 0.09 1.32 ± 0.06 ± 0.09 1.32 ± 0.04 ± 0.09
R1 1.57 ± 0.09 ± 0.14 1.52 ± 0.10 ± 0.16 1.55 ± 0.07 ± 0.14
R2 0.68 ± 0.07 ± 0.10 0.69 ± 0.08 ± 0.10 0.67 ± 0.05 ± 0.09

B(B+ → D̄0�+ν) (%) 2.42 ± 0.04 ± 0.15 2.28 ± 0.04 ± 0.17 2.35 ± 0.03 ± 0.13
B(B+ → D̄∗0�+ν) (%) 5.43 ± 0.05 ± 0.23 5.27 ± 0.06 ± 0.36 5.41 ± 0.04 ± 0.22
χ2/ndof (P-value) 418/468 (0.95) 491/464 (0.18) 2.0/6 (0.92)

Table 11.1: [R1 and R2 floated fit results] Fit results on the electron and muon
samples and the combined results.

ρ2
D ρ2 R1 R2 B(D�ν) B(D∗�ν)

ρ2
D 1
ρ2 -0.439 1
R1 -0.227 +0.733 1
R2 +0.519 -0.771 -0.710 1

B(D�ν) +0.593 -0.044 +0.127 +0.113 1
B(D∗�ν) -0.318 +0.428 +0.145 -0.315 +0.222 1

Table 11.2: [R1 and R2 floated fit correlation coefficients] Correlations between
parameters.

11.2 Results when floating R1 and R2

In addition to the nominal fit, we also performed a fit with R1 and R2 as free pa-

rameters. The results are summarized in Table 11.1. The correlations corresponding

to combined result are given in Table 11.2. We compare our results with previous

BaBar measurement [46] :

ρ2 = 1.191 ± 0.048 ± 0.028

R1 = 1.429 ± 0.061 ± 0.044

R2 = 0.827 ± 0.038 ± 0.022

(11.6)

The two results, compared in the space of the three form factor parameters, are

consistent at 36 % CL (Confidence Level).
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Chapter 12

Conclusion

We reconstruct D0� and D+� pairs to access exclusive decays of the type B →
D(∗)(π)�ν. Instead of explicitly reconstruct D∗ and D∗∗, kinematic variables, p∗� , p

∗
D

and cos ΘB−D� are used to distinguish each exclusive mode and background. We use

a global fit to measure two form factor slopes

ρ2
D = 1.23 ± 0.04(stat.) ± 0.07(syst.)

ρ2 = 1.21 ± 0.02(stat.) ± 0.07(syst.)
(12.1)

and two branching fractions

B(B+ → D̄0�+ν) = (2.38 ± 0.03(stat.) ± 0.12(syst.))%

B(B+ → D̄∗0�+ν) = (5.32 ± 0.02(stat.) ± 0.21(syst.))%
(12.2)

These results have good agreement with world average. We also determine

G(1)|Vcb| = (44.1 ± 0.8(stat.) ± 2.2(syst.))× 10−3

F(1)|Vcb| = (35.6 ± 0.2(stat.) ± 1.2(syst.)) × 10−3
(12.3)

The G(1)|Vcb| is twice as precise as world average and the precision of F(1)|Vcb|
is similar to the best single measurement. This analysis method is different from

and complementary to previous BaBar measurements [11, 46, 56]; the results are
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consistent.

From these results, we extract |Vcb|. From G(1)|Vcb|

|Vcb| = (40.8 ± 0.8(stat.) ± 2.1(syst.) ± 0.9(theo.)) × 10−3 (12.4)

and from F(1)|Vcb|

|Vcb| = (38.3 ± 0.2(stat.) ± 1.3(syst.) ± 0.9(theo.)) × 10−3 (12.5)

These are consistent with each other. We also take a ratio

G(1)

F(1)
= 1.24 ± 0.09 (12.6)

which agrees with theoretical prediction.
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Appendix A

Decay modes to consider

A.1 Semileptonic B → D(∗,∗∗)�ν decays

A.1.1 Semileptonic B+ decays

There are three types of decay modes (Figure A.1).

• B+ → D̄(∗,∗∗)0�+ν�

• B+ → D̄(∗)0π0�+ν�

• B+ → D(∗)−π+�+ν�

A.1.2 Semileptonic B0 decays

There are three types of decay modes (Figure A.1).

• B0 → D(∗,∗∗)−�+ν�

• B0 → D(∗)−π0�+ν�

• B0 → D̄(∗)0π−�+ν�

A.2 D∗ and D∗∗ decays

A.2.1 D∗,∗∗+ decays

There are three types of decay modes (Figure A.2).
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Figure A.1: Feynman diagrams of semileptonic B → D(∗,∗∗)�ν decays
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• D∗,∗∗+ → D(∗)0π+

• D∗,∗∗+ → D(∗)+π0

• D∗,∗∗+ → D(∗)+γ

Note that

• D∗∗+ → D∗+γ is negligible because it is an electromagnetic process and small

compared to strong processes.

• D∗+ → D∗+γ is allowed because strong processes are suppressed by phase space,

the EM process amplitude has comparable size to strong processes.

A.2.2 D∗,∗∗0 decays

There are three types of decay modes (Figure A.2).

• D∗,∗∗0 → D(∗)+π−

• D∗,∗∗0 → D(∗)0π0

• D∗,∗∗0 → D(∗)0γ

Note that

• D∗∗0 → D∗0γ is negligible

• D∗0 → D+π− is not allowed because mD∗0 < mD+ +mπ−

A.3 D0 and D+ decays

A.3.1 D0 decays

There are four decay modes used in the reconstruction of D0 (Figure A.3).

• D0 → K−π+
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• D0 → K−π+π+π−

• D0 → K−π+π0

• D0 → K0
sπ

+π−

A.3.2 D+ decays

There are two decay modes used in the reconstruction of D+ (Figure A.3).

• D+ → K−π+π+

• D+ → K̄0
sπ

+
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A.4 Decay chain

A.4.1 B+ decay chain

1. B+ → D̄0�+ν� (D0)

2. B+ → D̄∗0�+ν�

� D−π+
(not possible)

� D̄0π0
(D0)

� D̄0γ (D0)

3. B+ → D̄∗∗0�+ν�

� D−π+
(D+)

� D̄0π0
(D0)

� D̄0γ (negligible)

� D∗−π+

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (D+)

� D̄∗0π0

� D−π+
(not possible)

� D̄0π0
(D0)

� D̄0γ (D0)

� D̄∗0γ (negligible)

4. B+ → D̄0π0�+ν� (D0)

5. B+ → D−π+�+ν� (D+)
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6. B+ → D̄∗0π0�+ν�

� D−π+
(not possible)

� D̄0π0
(D0)

� D̄0γ (D0)

7. B+ → D∗−π+�+ν�

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (D+)

A.4.2 B0 decay chain

1. B0 → D−�+ν� (D0)

2. B0 → D∗−�+ν�

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (D+)
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3. B0 → D∗∗−�+ν�

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (negligible)

� D∗−π0

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (D+)

� D̄∗0π−

� D−π+
(not possible)

� D̄0π0
(D0)

� D̄0γ (D0)

� D̄∗−γ (negligible)

4. B0 → D−π0�+ν� (D+)

5. B0 → D̄0π−�+ν� (D0)

6. B0 → D∗−π0�+ν�

� D̄0π−
(D0)

� D−π0
(D+)

� D−γ (D+)

7. B0 → D̄∗0π−�+ν�

� D−π+
(not possible)

� D̄0π0
(D0)

� D̄0γ (D0)
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Appendix B

Classification of D∗∗

B.1 Angular momentum of a meson

In atomic spectroscopy, there are two useful schemes to add angular momentum:

LS-coupling and jj-coupling.

• LS-coupling

S = s1 + s2

J = L + S
(B.1)

• jj-coupling

j1 = L + s1

J = j1 + s2

(B.2)

where s, l and j are the spin, orbital angular momentum and total angular momentum

of individual particles, and S, L and J are the spin, orbital angular momentum and

total angular momentum of the system.

B.2 Parity of a meson (Qq̄-system) : P = (−1)L+1

The parity of
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• Quark 1 : PQ = +1

• Anti-quark : Pq̄ = −1

• Orbital angular momentum L : (−1)L

Thus, the parity of a Qq̄-system is given by

P = (PQ)(Pq̄)(−1)L = (+1)(−1)(−1)L = (−1)L+1 (B.3)

Hence, P = (−) for L = 0 and P = (+) for L = 1.

B.3 Standard classification of mesons

For equal-mass meson system, it is traditional to couple the orbital angular momen-

tum, L, with the total spin of the quark and anti-quark, S (LS-coupling scheme).

S = s1 + s2

J = L + S
(B.4)

This is the standard practice for light mesons and heavy quarkonium (cc̄ and bb̄).

The good quantum numbers are then S, L and J .

There are spin-singlet and spin-triplet levels because S is always S = 0 or S = 1.

• For L = 0 and S = 0, J = 0 : 1S0

• For L = 0 and S = 1, J = 1 : 3S1

• For L = 1 and S = 0, J = 1 : 1P1

• For L = 1 and S = 1, J = 0, 1, 2 : 3P0,
3P1 or 3P2

1One could define the parity of quark to be (-1). Then its of anti-quark is (+1). But, as far as
P (quark) = - P (anti-quark), the final result won’t change.



154

Particle JP

1S0 D 0−
3S1 D∗ 1−
1P1 D1 1+

3P0 D∗
0 0+

3P1 D∗
1 1+

3P2 D∗
2 2+

Table B.1: Traditional spectroscopic notation of D, D∗ and D∗∗ mesons.

In general, for S = 0 and S = 1

1LL and 3LL−1,L,L+1 (B.5)

We may apply this classification to D, D∗ and D∗∗ mesons. It is summarized in

Table B.1. In this classification D∗∗ consists of one singlet (D1) and a triplet (D∗
0,

D∗
1 and D∗

2).

B.4 Heavy Quark Effective Theory (HQET) and D, D∗ and

D∗∗ mesons

In HQET, the spin symmetry suggests that the spin of heavy quark is conserved.

Thus, for the mesons consist of heavy and light quarks, we can apply jj coupling

scheme. First, we can add the angular momentum (L) and the spin of the light quark

(sl) to get the angular momentum of light constituent (jl). Then we can add the spin

of the heavy quark (sh) to jl.

jl = L + sl

J = jl + sh

(B.6)

For L = 0 and sl = 1/2, jl = 1/2 only, and for L = 1 and sl = 1/2, jl = 1/2 or

jl = 3/2. Hence,

• L = 0, jl = 1/2 → J = 0 (D) or 1 (D∗)
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jP
l Particles JP mass (GeV)

1
2

+
D, D∗ 0−, 1− 1.971

1
2

+
D∗

0, D
′
1 0+, 1+ 2.40

3
2

+
D1, D

∗
2 1+, 2+ 2.445

Table B.2: Spin parity of charmed meson doublets

Figure B.1: Charmed meson levels and transitions. jq = jl in the text. The yellow bands
show the width of each D∗∗ state

.

• L = 1, jl = 1/2 → J = 0 (D∗
0) or 1 (D′

1)

• L = 1, jl = 3/2 → J = 1 (D1) or 2 (D∗
2)

These are summarized in Table B.2. In this classification, D∗∗ consists of two doublets

: (D∗
0, D

′
1) and (D1, D

∗
2).

B.5 Decay modes of D∗∗

The HQET based classification implies that the j = 3/2 states will decay only through

the d-wave (D1 → D∗ and D∗
2 → D) and so will be narrow. The j = 1/2 states can

decay through the s-wave (D∗
0 → D and D′

1 → D∗) and, in general, will be broad.
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Initial state Final state ∆L description

D∗
0 Dπ 0 broad S-wave transition

D∗π 1 parity violation
D′

1 Dπ 1 parity violation
D∗π 0 broad S-wave transition

2 heavy quark spin symmetry violation
D1 Dπ 1 parity violation

D∗π 0 heavy quark spin symmetry violation
2 narrow D-wave transition

D∗
2 Dπ 2 narrow D-wave transition

D∗π 2 narrow D-wave transition

Table B.3: D∗∗ decay modes.

This is shown in Figure B.1 and summarized in Table B.3. We consider this in detail.

Spin-parity of Dπ system is

• Since D : S = 0, P = (−) and π : S = 0, P = (−)

• if L = 0, J = 0 and P = (−)(−)(−)0 = (+), then JP = 0+

• if L = 1, J = 1 and P = (−)(−)(−)1 = (−), then JP = 1−

• if L = 2, J = 2 and P = (−)(−)(−)2 = (+), then JP = 2+

Note that P = (−)L for a orbital angular momentum L system. Spin-parity of D∗π

system is

• Since D∗ : S = 1, P = (−) and π : S = 0, P = (−)

• if L = 0, J = 1 and P = (−)(−)(−)0 = (+), then JP = 1+

• if L = 1, J = 2, 1, 0 and P = (−)(−)(−)1 = (−), then JP = 0−, 1−, 2−

• if L = 2, J = 3, 2, 1 and P = (−)(−)(−)2 = (+), then JP = 1+, 2+, 3+

Thus,
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• JP = 0+ state (D∗
0) can decay only to Dπ and ∆L = 0

• JP = 1+ state (D1 and D′
1) can decay only to D∗π and ∆L = 0, 2

• JP = 2+ state (D∗
2) can decay both to Dπ and to D∗π and ∆L = 2

Next, we consider angular momentum of D1 and D′
1 decays.

• D1(L = +1, sl = +1/2, jl = +3/2; sh = −1/2, J = +1)

→ D∗(sl = +1/2, sh = +1/2, jD = +1) + π(jπ = 0) + (L = 0); J = +1

This violates heavy quark spin symmetry (sh = −1/2 → sh = +1/2)

• D1(L = +1, sl = +1/2, jl = +3/2; sh = −1/2, J = +1)

→ D∗(sl = −1/2, sh = −1/2, jD = −1) + π(jπ = 0) + (L = +2); J = +1

This conserves heavy quark spin symmetry (sh = −1/2 → sh = −1/2)

• D′
1(L = +1, sl = −1/2, jl = +1/2; sh = +1/2, J = +1)

→ D∗(sl = +1/2, sh = +1/2, jD = +1) + π(jπ = 0) + (L = 0); J = +1

This conserves heavy quark spin symmetry (sh = +1/2 → sh = +1/2)

• D′
1(L = +1, sl = −1/2, jl = +1/2; sh = +1/2, J = +1)

→ D∗(sl = −1/2, sh = −1/2, jD = −1) + π(jπ = 0) + (L = +2); J = +1

This violates heavy quark spin symmetry (sh = +1/2 → sh = −1/2)
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Appendix C

Isospin Symmetry

Isospin symmetry is an approximate symmetry due to the similar mass of u and d

quarks. These two quarks are treated as a doublet and isospin is assigned such that

u : |1/2,+1/2 >, d : |1/2,−1/2 > (C.1)

Isospin of other quarks are all zero. Isospin can be treated in the same way as ordinaly

spin. Thus, we can use Clebsh-Gordon coefficients to add or subtract two isospins.

C.1 Semileptonic B decays

From isospin symmetry, these B decay rates are identical

Γ(B+ → D̄0�+ν) = Γ(B0 → D−�+ν)

Γ(B+ → D̄∗0�+ν) = Γ(B0 → D∗−�+ν)

Γ(B+ → D̄∗∗0�+ν) = Γ(B0 → D∗∗−�+ν)

(C.2)

Isospin symmetry may be applied to non-resonant B → D(∗)π�ν decays.

ΓNR(B+ → D−π+�+ν) = ΓNR(B0 → D̄0π−�+ν)

ΓNR(B+ → D∗−π+�+ν) = ΓNR(B0 → D̄∗0π−�+ν)
(C.3)
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ΓNR(B+ → D−π+�+ν) = 2ΓNR(B+ → D̄0π0�+ν)

ΓNR(B0 → D̄0π−�+ν) = 2ΓNR(B0 → D−π0�+ν)

ΓNR(B+ → D∗−π+�+ν) = 2ΓNR(B+ → D̄∗0π0�+ν)

ΓNR(B0 → D̄∗0π−�+ν) = 2ΓNR(B0 → D∗−π0�+ν)

(C.4)

The origin of the factor 2 is, for example,

B+(ub̄) : |1/2, 1/2 >
D−(dc̄) : |1/2,−1/2 >

π+(ud̄) : |1, 1 >
D−π+ : |1, 1 > ×|1/2,−1/2 >=

√
1
3
|3/2, 1/2 > +

√
2
3
|1/2, 1/2 >

D̄0(uc̄) : |1/2, 1/2 >
π0(uū or dd̄) : |1, 0 >
D̄0π0 : |1, 0 > ×|1/2, 1/2 >=

√
2
3
|3/2, 1/2 > −

√
1
3
|1/2, 1/2 >

(C.5)

hence

Γ(B+ → D−π+�+ν) : Γ(B+ → D̄0π0�+ν) =
2

3
:

1

3
= 2 : 1 (C.6)

Branching fractions are not same because of the difference in total rate (Γ) or life

time (τ) of B+ and B0. We define

t+0 ≡ τB+

τB0

=
ΓB0

ΓB+

(C.7)

So, branching fractions are, for example,

B(B+ → D̄∗0�+ν)
B(B0 → D∗−�+ν)

=
Γ(B+ → D∗�ν)
Γ(B0 → D∗�ν)

ΓB0

ΓB+

= t+0 (C.8)
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Thus, due to isospin symmetry, we have the following relations between branching

fractions of semileptonic B decays.

B(B+ → D̄0�+ν) = t+0B(B0 → D−�+ν)

B(B+ → D̄∗0�+ν) = t+0B(B0 → D∗−�+ν)

B(B+ → D̄∗∗0�+ν) = t+0B(B0 → D∗∗−�+ν)

BNR(B+ → D−π+�+ν) = 2BNR(B+ → D̄0π0�+ν)

= t+0BNR(B0 → D̄0π−�+ν) = 2t+0BNR(B0 → D−π0�+ν)

BNR(B+ → D∗−π+�+ν) = 2BNR(B+ → D̄∗0π0�+ν)

= t+0BNR(B0 → D̄∗0π−�+ν) = 2t+0BNR(B0 → D∗−π0�+ν)

(C.9)

C.2 D∗∗ decays

Isospin symmetry may be applied to D∗∗ decays as well.

Γ(D∗∗0 → D+π−) = Γ(D∗∗+ → D0π+)

Γ(D∗∗0 → D0π0) = Γ(D∗∗+ → D+π0)

Γ(D∗∗0 → D∗+π−) = Γ(D∗∗+ → D∗0π+)

Γ(D∗∗0 → D∗0π0) = Γ(D∗∗+ → D∗+π0)

(C.10)

And also

Γ(D∗∗0 → D+π−) = 2Γ(D∗∗0 → D0π0)

Γ(D∗∗+ → D0π+) = 2Γ(D∗∗+ → D+π0)

Γ(D∗∗0 → D∗+π−) = 2Γ(D∗∗0 → D∗0π0)

Γ(D∗∗+ → D∗0π+) = 2Γ(D∗∗+ → D∗+π0)

(C.11)
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This factor 2 has the same origin as B decay case. For example,

D∗∗+ : |1/2, 1/2 >
D0 : |1/2,−1/2 >

π+ : |1, 1 >
D0π+ : |1, 1 > ×|1/2,−1/2 >=

√
1
3
|3/2, 1/2 > +

√
2
3
|1/2, 1/2 >

D+ : |1/2, 1/2 >
π0 : |1, 0 >
D+π0 : |1, 0 > ×|1/2, 1/2 >=

√
2
3
|3/2, 1/2 > −

√
1
3
|1/2, 1/2 >

(C.12)

hence

Γ(D∗∗+ → D0π+) : Γ(D∗∗+ → D+π0) =
2

3
:

1

3
= 2 : 1 (C.13)

Supposing total rates or lifetimes of D∗∗0 and D∗∗+ are same, branching fractions for

D∗∗ decays are

B(D∗∗0 → D+π−) = 2B(D∗∗0 → D0π0) = B(D∗∗+ → D0π+) = 2B(D∗∗+ → D+π0)

B(D∗∗0 → D∗+π−) = 2B(D∗∗0 → D∗0π0) = B(D∗∗+ → D∗0π+) = 2B(D∗∗+ → D∗+π0)

(C.14)
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Appendix D

cos θBY

Since we are interested in semileptonic B decays and we reconstruct D� pairs, we

consider the case Y = D�.

D.1 B → D�ν decays

In the decay of B → Dl + ν, 4-momentum conservation gives

pB = pDl + pν (D.1)

As the mass of neutrino is equal to zero

0 = p2
ν = (pB − pDl)

2 = p2
B + p2

Dl − 2pB · pDl = m2
B +m2

Dl − 2pB · pDl (D.2)

Here,

pB · pDl = EBEDl − pB · pDl = EBEDl − |pB||pDl| cosΘB−Dl (D.3)

Hence

0 = m2
B +m2

Dl − 2(EBEDl − |pB||pDl| cosΘB−Dl)

⇒ m2
B +m2

Dl = 2EBEDl − 2|pB||pDl| cosΘB−Dl
(D.4)

Therefore

cos ΘB−Dl =
2EBEDl −m2

B −m2
Dl

2|pB||pDl|
(D.5)
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Note that cos ΘB−Dl is given by the energy, mass and momentum of B and D�.

In practice, EB is given by the half of the beam energy in the CM frame and |pB|
is given by

|pB| =
√
E2

B −m2
B (D.6)

D.2 B → D∗�ν decays

If the B decay involves additional particles, cos ΘB−Dl < −1 is possible. As an

example, let us consider B → D∗�ν decays. In this case, the pion from D∗ → Dπ

decay is not included in the D�. Conservation of 4-momentum gives

pB = pDl + pπ + pν (D.7)

Then,

(pν + pπ)2 = (pB − pDl)
2

⇒ p2
ν + p2

π + 2pν · pπ = p2
B + p2

Dl − 2pB · pDl

⇒ 0 +m2
π + 2pν · pπ = m2

B +m2
Dl − 2pB · pDl

(D.8)

Since mπ � mB,

2pν · pπ = m2
B +m2

Dl − 2pB · pDl (D.9)

and also

pν · pπ = EνEπ − pν · pπ = EνEπ − |pν ||pπ| cosΘν−π

= EνEπ − EνEπ cos Θν−π = EνEπ (1 − cos Θν−π) ≥ 0
(D.10)

Let the angle between B and Dl be Θ′
B−Dl. Then,

pB · pDl = EBEDl − pB · pDl = EBEDl − |pB||pDl| cos Θ′
B−Dl (D.11)
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Hence,

cos Θ′
B−Dl =

2EBEDl −m2
B −m2

Dl

2|pB||pDl|
+

2pν · pπ

2|pB||pDl|
= cos ΘB−Dl + α (D.12)

where

α ≡ 2pν · pπ

2|pB||pDl|
≥ 0 (D.13)

Considering

−1 ≤ cos Θ′
B−Dl ≤ 1 (D.14)

cos ΘB−Dl = cos Θ′
B−Dl − α is

−1 − α ≤ cos ΘB−Dl ≤ 1 − α (D.15)

Since α ≥ 0, the lower end of cos ΘB−Dl can be smaller than -1.

D.3 If D and l come from different B

In the case that D and l came from different B, cos ΘB−Dl > 1 is possible.

EDl = ED + El =
√
m2

D + |pD|2 +
√
m2

l + |pl|2 =
√
m2

D + |pD|2 + |pl|
|pDl|2 = |pD + pl|2 = |pD|2 + |pl|2 + 2|pD||pl| cos θ

(D.16)

and

m2
Dl = E2

Dl − |pDl|2

= m2
D + |pD|2 + |pl|2 + 2|pl|

√
m2

D + |pD|2 − |pD|2 − |pl|2 − 2|pD||pl| cos θ

= m2
D + 2|pl|

√
m2

D + |pD|2 − 2|pD||pl| cos θ

= m2
D + 2|pl|(

√
m2

D + |pD|2 − |pD| cos θ)

(D.17)

If D and l come from different B, pD and pl are not restricted by energy momentum

conservation. The |pD| and |pl| can be any value. For example, if |pl| � |pD| and
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cos θ � −1, |pDl| can be very small. However,

2EBEDl −m2
B −m2

Dl

� 2EB(
√
m2

D + |pD|2 + |pD|) −m2
B −m2

D − 2|pD|(
√
m2

D + |pD|2 + |pD|)
= 2(

√
m2

D + |pD|2 + |pD|)(EB − |pD|) −m2
B −m2

D

(D.18)

is not necessarily small. For example, if |pD| � mD

2EBEDl −m2
B −m2

Dl � 2mDEB −m2
B −m2

D � −(mB −mD)2 (D.19)

Hence

cos ΘB−Dl =
2EBEDl −m2

B −m2
Dl

2|pB||pDl|
(D.20)

can be large negative number. And, if |pD| � 1.2 mD

2EBEDl −m2
B −m2

Dl � 5.4mD(mB −mD) −m2
B −m2

D > 0 (D.21)

Hence

cos ΘB−Dl =
2EBEDl −m2

B −m2
Dl

2|pB||pDl|
(D.22)

can be larger than 1.
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Appendix E

Velocity transfer w

E.1 w and q2

In the framework of Heavy Quark Effective Theory (HQET) it is convenient to use

the velocity transfer w instead of momentum transfer q2. In semileptonic B → D(∗)�ν

decays, w is defined as the product of 4-velocities of B and D(∗)

w ≡ vB · vD(∗) =
pB · pD(∗)

mBmD(∗)
(E.1)

The momentum transfer q2 from B to D(∗) (or the invariant mass of the virtual W )

is given by

q = p� + pν = pB − pD(∗) (E.2)

Thus

q2 = (pB − pD(∗))2 = p2
B + p2

D(∗) − 2pB · pD(∗) = m2
B +m2

D(∗) − 2pB · pD(∗)

⇒ pB · pD(∗) =
m2

B+m2

D(∗)−q2

2

(E.3)

Hence

w =
m2

B +m2
D(∗) − q2

2mBmD(∗)
(E.4)

w is a Lorentz invariant and linearly related to q2.
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w corresponds to the relativistic boost γ of the D(∗) in the B rest frame.

γD(∗) =
ED(∗)

mD(∗)
(E.5)

E.2 1 ≤ w � 1.6

The range of w and q2 are restricted by kinematics of the decay. When q2 = 0, w is

maximum

wmax =
m2

B +m2
D(∗)

2mBmD(∗)
(E.6)

Using mB = 5279, mD = 1867 and mD∗ = 2008 MeV,

m2
B +m2

D

2mBmD

= 1.590,
m2

B +m2
D∗

2mBmD∗
= 1.504 (E.7)

Using mD∗
0

= 2400, mD′
1

= 2430, mD1 = 2420 and mD∗
2

= 2460 MeV,

m2
B +m2

D∗
0

2mBmD∗
0

= 1.327,
m2

B +m2
D′

1

2mBmD′
1

= 1.316,

m2
B +m2

D1

2mBmD1

= 1.320,
m2

B +m2
D∗

2

2mBmD∗
2

= 1.306 (E.8)

The minimum of the w is

wmin = 1 (E.9)

which corresponds to

q2
max = (mB −mD(∗))2 (E.10)

where

(mB −mD)2 = 11.64, (mB −mD∗)2 = 10.69 (GeV/c2)2 (E.11)

and

(mB −mD∗
0
)2 = 8.29, (mB −mD′

1
)2 = 8.12 (GeV/c2)2, (E.12)
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(mB −mD1)
2 = 8.17, (mB −mD∗

2
)2 = 7.95 (GeV/c2)2 (E.13)

E.3 Practical calculation of w

We can calculate w by the following formula

w =
pB · pD(∗)

mBmD(∗)
=
EBED(∗) − |P B||P D(∗)| cos θB−D

mBmD(∗)
(E.14)

In practice, EB is the beam energy in the CM frame, and |P B| is given by

|P B| =
√
E2

B −m2
B (E.15)
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Appendix F

Calculation of G(1)|Vcb| and F(1)|Vcb|

F.1 G(1)|Vcb|
The differential decay rate forB → D�ν decays is given in Equation (2.10). Combined

with CLN parametrization given in Equation (2.17), the differential decay rate is

given by

dΓ(B → D�ν)

dw

=
G2

Fm
5
B

48π3
r3(w2 − 1)3/2 (1 + r)2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2

× (G(1)|Vcb|)2 (F.1)

Note that G(1) = h+(1). By integrating over w, we get

B(B → D�ν)

τB

=
G2

Fm
5
B

48π3
r3(1 + r)2

∫
(w2 − 1)3/2[1 − 8ρ2

Dz + (51ρ2
D − 10)z2 − (252ρ2

D − 84)z3]2dw

× (G(1)|Vcb|)2 (F.2)
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where τB is the lifetime of the B meson. If we define

CD ≡
√

48π3

G2
Fm

5
BτBr

3(1 + r)2
(F.3)

ID
1 ≡

∫
(w2 − 1)3/2(1 − 10z2 + 84z3)2dw (F.4)

ID
2 ≡ 2

∫
(w2 − 1)3/2(1 − 10z2 + 84z3)(8z − 51z2 + 252z3)dw (F.5)

ID
3 ≡

∫
(w2 − 1)3/2(8z − 51z2 + 252z3)2dw (F.6)

then

G(1)|Vcb| = CDB(B → D�ν)1/2[ID
1 − ρ2

DI
D
2 + (ρ2

D)2ID
3 ]−1/2 (F.7)

Thus, using fit results B(B → D�ν) and ρ2
D, we can calculate G(1)|Vcb|. We use the

following numerical values

τB+ = 1.638 × 10−12/6.58211915× 10−25 GeV−1

mB+ = 5.2790 GeV

mD0 = 1.8645 GeV

GF = 1.166371 × 10−5 GeV−2

(F.8)

F.2 F(1)|Vcb|2

The differential decay rate for B → D∗�ν decays is given in Equation (2.26). Com-

bined with CLN parametrization given in Equation (2.25), the differential decay rate

is given by

dΓ(B → D∗�ν)
dw

=
G2

F |Vcb|2m5
B

48π3
r3(w2 − 1)1/2(w + 1)2

×[F(1)]2[1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3]2(h̃2
+ + h̃2

− + h̃2
0) (F.9)
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Note that F(1) = hA1(1). By integrating over w, we get

B(B → D∗�ν)
τB

=
G2

Fm
5
B

48π3
r3 (F(1)|Vcb|)2∫

(w2 − 1)1/2(w + 1)2(h̃2
+ + h̃2

− + h̃2
0)

×[1 − 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3]2dw (F.10)

Let us simplify this equation. By defining

k1 ≡ −0.12(w − 1) + 0.05(w − 1)2

k2 ≡ 0.11(w − 1) − 0.06(w − 1)2
(F.11)

we get

h̃2
+ + h̃2

− + h̃2
0

= (1 − 2wr + r2)

[
1 − 2

√
w − 1

w + 1
(R1 + k1) +

w − 1

w + 1
(R1 + k1)

2

]

+(1 − 2wr + r2)

[
1 + 2

√
w − 1

w + 1
(R1 + k1) +

w − 1

w + 1
(R1 + k1)

2

]
+(w − r)2 − 2(w − r)(w − 1)(R2 + k2) + (w − 1)2(R2 + k2)

2

= (2 + w2 − 6wr + 3r2) + 2(1 − 2wr + r2)
w − 1

w + 1
(R2

1 + 2k1R1 + k2
1)

−2(w − r)(w − 1)(R2 + k2) + (w − 1)2(R2
2 + 2k2R2 + k2

2) (F.12)
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Thus, if we define

A ≡ (2 + w2 − 6wr + 3r2) + 2(1 − 2wr + r2)
w − 1

w + 1
k2

1

−2(w − r)(w − 1)k2 + (w − 1)2k2
2 (F.13)

B1 ≡ 4(1 − 2wr + r2)
w − 1

w + 1
k1 (F.14)

D1 ≡ 2(1 − 2wr + r2)
w − 1

w + 1
(F.15)

B2 ≡ −2(w − r)(w − 1) + 2k2(w − 1)2 (F.16)

D2 ≡ (w − 1)2 (F.17)

then

h̃2
+ + h̃2

− + h̃2
0 = A+B1R1 +D1R

2
1 +B2R2 +D2R

2
2 (F.18)

If we further define

E1 ≡ (w2 − 1)1/2(w + 1)2(1 − 15z2 + 91z3)2

E2 ≡ 2(w2 − 1)1/2(w + 1)2(1 − 15z2 + 91z3)(8z − 53z2 + 231z3)

E3 ≡ (w2 − 1)1/2(w + 1)2(8z − 53z2 + 231z3)2

(F.19)
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and

I1 ≡
∫
AE1dw (F.20)

I2 ≡
∫
AE2dw (F.21)

I3 ≡
∫
AE3dw (F.22)

I4 ≡
∫
B1E1dw (F.23)

I5 ≡
∫
B1E2dw (F.24)

I6 ≡
∫
B1E3dw (F.25)

I7 ≡
∫
C1E1dw (F.26)

I8 ≡
∫
C1E2dw (F.27)

I9 ≡
∫
C1E3dw (F.28)

I10 ≡
∫
B2E1dw (F.29)

I11 ≡
∫
B2E2dw (F.30)

I12 ≡
∫
B2E3dw (F.31)

I13 ≡
∫
C2E1dw (F.32)

I14 ≡
∫
C2E2dw (F.33)

I15 ≡
∫
C2E3dw (F.34)

and also

C ≡
√

48π3

G2
Fm

5
BτBr

3
(F.35)
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F(1)|Vcb| = CB(B → D∗�ν)1/2[I1 − I2ρ
2 + I3(ρ

2)2

+I4R1 − I5R1ρ
2 + I6R1(ρ

2)2

+I7R
2
1 − I8R

2
1ρ

2 + I9R
2
1(ρ

2)2

+I10R2 − I11R2ρ
2 + I12R2(ρ

2)2

+I13R
2
2 − I14R

2
2ρ

2 + I15R
2
2(ρ

2)2]−1/2

(F.36)

Thus, using fit results B(B → D∗�ν), R1, R2 and ρ2, we can calculate F(1)|Vcb|. We

use the following numerical value in addition to the ones given in Equation (F.8)

mD∗0 = 2.0067 GeV (F.37)

F.3 Uncertainties

To calculate uncertainties and correlations, for simplicity, we define

y1 ≡ G(1)|Vcb|
y2 ≡ F(1)|Vcb|
y3 ≡ ρ2

y4 ≡ ρ2
D

y5 ≡ R1

y6 ≡ R2

x1 ≡ ρ2
D

x2 ≡ ρ2

x3 ≡ R1

x4 ≡ R2

x5 ≡ B(B → D�ν)

x6 ≡ B(B → D∗�ν)

(F.38)



175

then, Equation (F.7) becomes

y1 = CDx
1/2
5 (ID

1 − ID
2 x1 + ID

3 x
2
1)

−1/2 (F.39)

and Equation (F.36) becomes

y2 = Cx
1/2
6 [I1 − I2x2 + I3x

2
2

+I4x3 − I5x3x2 + I6x3x
2
2

+I7x
2
3 − I8x

2
3x2 + I9x

2
3x

2
2

+I10x4 − I11x4x2 + I12x4x
2
2

+I13x
2
4 − I14x

2
4x2 + I15x

2
4x

2
2]

−1/2

(F.40)

The error matrix M(y) of y1 - y6 is determined by

M(y) =

(
∂yi

∂xj

)
M(x)

(
∂yi

∂xj

)
(F.41)
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where M(x) the error matrix of x1 - x6, which can be extracted from fit, and

∂y1

∂x1
=
C

2
x

1/2
5 (ID

2 − 2ID
3 x1)(I

D
1 − ID

2 x1 + ID
3 x

2
1)

−3/2 (F.42)

∂y1

∂x5
=
C

2
x
−1/2
5 (ID

1 − ID
2 x1 + ID

3 x
2
1)

−1/2 (F.43)

∂y2

∂x2
= −C

2
x

1/2
6 (−I2 + 2I3x2 − I5x3 + 2I6x3x2 − I8x

2
3 + 2I9x

2
3x2

−I11x6 + 2I12x6x2 − I14x
2
6 + 2I15x

2
6x2)F

−3/2 (F.44)

∂y2

∂x3

= −C
2
x

1/2
6 (I4 − I5x2 + I6x

2
2 + 2I7x3 − 2I8x3x2 + 2I9x3x

2
2)F

−3/2 (F.45)

∂y2

∂x4

= −C
2
x

1/2
6 (I10 − I11x2 + I12x

2
2 + 2I13x4 − 2I14x4x2 + 2I15x4x

2
2)F

−3/2 (F.46)

∂y2

∂x6

=
C

2
x
−1/2
6 F−1/2 (F.47)

∂y3

∂x1

= 1 (F.48)

∂y4

∂x2

= 1 (F.49)

∂y5

∂x3
= 1 (F.50)

∂y6

∂x4
= 1 (F.51)

where

F = I1 − I2x2 + I3x
2
2 + I4x3 − I5x3x2 + I6x3x

2
2 + I7x

2
3 − I8x

2
3x2 + I9x

2
3x

2
2

+I10x4 − I11x4x2 + I12x4x
2
2 + I13x

2
4 − I14x

2
4x2 + I15x

2
4x

2
2

(F.52)

and all other partial derivatives are zero.

The correlation coefficient, for example, between G(1)|Vcb| and F(1)|Vcb| can be

calculated by

cov(y1, y2)

σy1σy2

(F.53)
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Appendix G

Leibovich Ligeti Stewart Wise (LLSW)

model

The LLSW model is described in [47,48]. We will summarize the part which is related

to our analysis.

The relevant kinematic variables are w and θ. This θ is the angle between the

charged lepton and the charmed meson in the rest frame of the virtual W boson.

Thus θ = π − θ�,

cos θ = cos(π − θ�) = − cos θ� (G.1)

In the paper [48], they use different approximations : Approximation A and B. In

Approximation A, they treat w − 1 as order ΛQCD/mQ and expand decay rates in

these parameters. Thus, Approximation A is useful only when w � 1. This is

not appropriate to our analysis. In Approximation B, they keep the known order

ΛQCD/mQ contributions to form factors as well as the full w-dependence of decay

rates. Thus, we consider only Approximation B.

In the paper two parameters are defined as follows

εb ≡ 1

2mb

, εc ≡ 1

2mc

(G.2)
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with numerical values

mb = 4.8GeV, mc = 1.4GeV (G.3)

The difference between a hadron mass and a heavy quark mass in the first order :

Λ̄ for ground state doublet (D and D∗)

Λ̄′ for exited 3
2

+
doublet (D1 and D∗

2)

Λ̄∗ for exited 1
2

+
doublet (D∗

0 and D′
1)

(G.4)

with numerical values

Λ̄ = 0.4GeV

Λ̄′ − Λ̄ = 0.39GeV

Λ̄∗ − Λ̄ = 0.35GeV

(G.5)

G.1 B → D1�ν

The matrix elements are

< D1(v
′, ε)|V µ|B(v) >√
mD1mB

= fV1ε
∗µ + (fV2v

µ + fV3v
′µ)(ε∗ · v) (G.6)

< D1(v
′, ε)|Aµ|B(v) >√
mD1mB

= ifAε
µαβγε∗αvβv

′
γ (G.7)

The differential decay rate is

d2ΓD1

dwd cos θ
= 3Γ0r

3
1

√
w2 − 1{sin2 θ[(w − r1)fV1 + (w2 − 1)(fV3 + r1fV2)]

2

+(1 − 2r1w + r2
1)[(1 + cos2 θ)(f 2

V1
+ (w2 − 1)f 2

A)

−4 cos θ
√
w2 − 1fV1fA]} (G.8)

where

Γ0 =
G2

F |Vcb|2m5
B

192π3
, r1 =

mD1

mB
(G.9)
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In approximation B, the form factors are given by

√
6fA = −(w + 1)τ − εb{(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2] + (w + 1)ηb}

−εc[4(wΛ̄′ − Λ̄)τ − 3(w − 1)(τ1 − τ2) + (w + 1)(ηke − 2η1 − 3η3)]
√

6fV1 = (1 − w2)τ − εb(w
2 − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb]

−εc[4(w + 1)(wΛ̄′ − Λ̄)τ − (w2 − 1)(3τ1 − 3τ2 − ηke + 2η1 + 3η3)]
√

6fV2 = −3τ − 3εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb]

−εc[(4w − 1)τ1 + 5τ2 + 3ηke + 10η1 + 4(w − 1)η2 − 5η3)]
√

6fV3 = (w − 2)τ + εb{(2 + w)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2] − (2 − w)ηb}
+εc[4(wΛ̄′ − Λ̄)τ + (2 + w)τ1 + (2 + 3w)τ2

+(w − 2)ηke − 2(6 + w)η1 − 4(w − 1)η2 − (3w − 2)η3]

(G.10)

where τ is the leading mQ → ∞ Isgur-Wise function, which is assumed to be a linear

form:

τ(w) = τ(1)[1 + τ̂ ′(w − 1)] (G.11)

where

τ ′ =
dτ

dw
, τ̂ ′ =

τ ′

τ(1)
(G.12)

The uncertainty in the ΛQCD/mQ corrections is parametrized by τ1 and τ2.

In Approximation B1,

τ1 = 0, τ2 = 0 (G.13)

In Approximation B2,

τ1 = Λ̄τ, τ2 = −Λ̄′τ (G.14)

These are the two end values of τ1 and τ2. True τ1 and τ2 reside somewhere in

between.
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ηi comes from the correction to the HQET Lagrangian. In Approximation B,

η1 = η2 = η3 = 0 (G.15)

Also, in this Approximation, η
(b)
1 = η

(b)
2 = η

(b)
3 = 0. Thus

ηb ≡ η
(b)
ke + 6η

(b)
1 − 2(w − 1)η

(b)
2 + η

(b)
3 = η

(b)
ke (G.16)

Hence, the form factors are

√
6fA = −(w + 1)(τ + εcηke + εbη

(b)
ke ) − εb(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(wΛ̄′ − Λ̄)τ − 3(w − 1)(τ1 − τ2)]
√

6fV1 = (1 − w2)(τ + εcηke + εbη
(b)
ke ) − εb(w

2 − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(w + 1)(wΛ̄′ − Λ̄)τ − 3(w2 − 1)(τ1 − τ2)]
√

6fV2 = −3(τ + εcηke + εbη
(b)
ke ) − 3εb[(Λ̄

′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[(4w − 1)τ1 + 5τ2]
√

6fV3 = (w − 2)(τ + εcηke + εbη
(b)
ke ) + εb(2 + w)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

+εc[4(wΛ̄′ − Λ̄)τ + (2 + w)τ1 + (2 + 3w)τ2]

(G.17)

ηke and η
(b)
ke can be absorbed into τ by the replacement of τ by

τ̃ = τ + εcηke + εbη
(b)
ke (G.18)
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Thus, the form factors are

√
6fA = −(w + 1)τ̃ − εb(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(wΛ̄′ − Λ̄)τ − 3(w − 1)(τ1 − τ2)]
√

6fV1 = (1 − w2)τ̃ − εb(w
2 − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(w + 1)(wΛ̄′ − Λ̄)τ − 3(w2 − 1)(τ1 − τ2)]
√

6fV2 = −3τ̃ − 3εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[(4w − 1)τ1 + 5τ2]
√

6fV3 = (w − 2)τ̃ + εb(2 + w)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

+εc[4(wΛ̄′ − Λ̄)τ + (2 + w)τ1 + (2 + 3w)τ2]

(G.19)

The other τ can also be replaced by τ̃ in the same order of approximation. For

simplicity, we omit the tilde, then

√
6fA = −(w + 1)τ − εb(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(wΛ̄′ − Λ̄)τ − 3(w − 1)(τ1 − τ2)]
√

6fV1 = (1 − w2)τ − εb(w
2 − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[4(w + 1)(wΛ̄′ − Λ̄)τ − 3(w2 − 1)(τ1 − τ2)]
√

6fV2 = −3τ − 3εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc[(4w − 1)τ1 + 5τ2]
√

6fV3 = (w − 2)τ + εb(2 + w)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

+εc[4(wΛ̄′ − Λ̄)τ + (2 + w)τ1 + (2 + 3w)τ2]

(G.20)

The numerical value for the slope is

τ̂ ′ = −1.5 ± 0.5 (G.21)
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G.2 B → D∗
2�ν

The matrix elements are

< D∗
2(v

′, ε)|V µ|B(v) >√
mD∗

2
mB

= ikV ε
µαβγε∗ασv

σvβv
′
γ (G.22)

< D∗
2(v

′, ε)|Aµ|B(v) >√
mD∗

2
mB

= kA1ε
∗µαvα + (kA2v

µ + kA3v
′µ)ε∗αβv

αvβ (G.23)

The differential decay rate is

d2ΓD∗
2

dwd cos θ
= 3

2
Γ0r

3
2(w

2 − 1)3/2{4
3
sin2 θ[(w − r2)kA1 + (w2 − 1)(kA3 + r2kA2)]

2

+(1 − 2r2w + r2
2)[(1 + cos2 θ)(k2

A1
+ (w2 − 1)k2

V ) − 4 cos θ
√
w2 − 1kA1kV ]}

(G.24)

where

r2 =
mD∗

2

mB
(G.25)

In Approximation B, the form factors are given by

kV = −τ − εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb] − εc(τ1 − τ2 + ηke − 2η1 + η3)

kA1 = −(1 + w)τ − εb{(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2] + (1 + w)ηb}
−εc[(w − 1)(τ1 − τ2) + (w + 1)(ηke − 2η1 + η3)]

kA2 = −2εc(τ1 + η2)

kA3 = τ + εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2 + ηb]

−εc(τ1 + τ2 − ηke + 2η1 − 2η2 − η3)

(G.26)
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We use the same tricks for ηs, then

kV = −τ − εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2] − εc(τ1 − τ2)

kA1 = −(1 + w)τ − εb(w − 1)[(Λ̄′ + Λ̄)τ − (2w + 1)τ1 − τ2]

−εc(w − 1)(τ1 − τ2)

kA2 = −2εcτ1

kA3 = τ + εb[(Λ̄
′ + Λ̄)τ − (2w + 1)τ1 − τ2] − εc(τ1 + τ2)

(G.27)

G.3 B → D∗
0�ν

The matrix elements are

< D∗
0(v

′, ε)|V µ|B(v) >√
mD∗

0
mB

= 0 (G.28)

< D∗
0(v

′, ε)|Aµ|B(v) >√
mD∗

0
mB

= g+(vµ + v′µ) + g−(vµ − v′µ) (G.29)

The differential decay rate is

d2ΓD∗
0

dwd cos θ
= 3Γ0r

∗3
0 (w2 − 1)3/2 sin2 θ[(1 + r∗0)g+ − (1 − r∗0)g−]2 (G.30)

where

r∗0 =
mD∗

0

mB

(G.31)

In Approximation B, the form factors are given by

g+ = εc

[
2(w − 1)ζ1 − 3ζ wΛ̄∗−Λ̄

w+1

]
− εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1

]
g− = ζ + εc [χke + 6χ1 − 2(w + 1)χ2] + εbχb

(G.32)
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We can use the same tricks for χs as ηs, then

g+ = εc

[
2(w − 1)ζ1 − 3ζ wΛ̄∗−Λ̄

w+1

]
− εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1

]
g− = ζ

(G.33)

where

ζ(w) =
w + 1√

3
τ(w) (G.34)

Thus,

ζ(1)[1 + ζ̂ ′(w − 1)] = 2+(w−1)√
3

τ(1)[1 + τ̂ ′(w − 1)]

� 1√
3
τ(1)[2 + 2τ̂ ′(w − 1) + (w − 1)]

= 2√
3
τ(1)

[
1 +

(
τ̂ ′ + 1

2

)
(w − 1)

] (G.35)

Hence

ζ(1) = 2√
3
τ(1)

ζ̂ ′ = 1
2

+ τ̂ ′ = −1 ± 0.5
(G.36)

In Approximation B1,

ζ1 = 0, ζ2 = 0 (G.37)

In Approximation B2,

ζ1 = Λ̄ζ, ζ2 = −Λ̄∗ζ (G.38)

These are the two end values of ζ1 and ζ2. True ζ1 and ζ2 reside somewhere in

between.

G.4 B → D∗
1�ν

The matrix elements are

< D∗
1(v

′, ε)|V µ|B(v) >√
mD∗

1
mB

= gV1ε
∗µ + (gV2v

µ + gV3v
′µ)(ε∗ · v) (G.39)

< D∗
1(v

′, ε)|Aµ|B(v) >√
mD∗

1
mB

= igAε
µαβγε∗αvβv

′
γ (G.40)
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The differential decay rate is

d2ΓD∗
1

dwd cos θ
= 3Γ0r

∗3
1

√
w2 − 1{sin2 θ[(w − r∗1)gV1 + (w2 − 1)(gV3 + r∗1gV2)]

2

+(1 − 2r∗1w + r∗21 )[(1 + cos2 θ)(g2
V1

+ (w2 − 1)g2
A) − 4 cos θ

√
w2 − 1gV1gA]}

(G.41)

where

r∗1 =
mD∗

1

mB

(G.42)

In Approximation B, the form factors are given by

gA = ζ + εc

[
wΛ̄∗−Λ̄

w+1
ζ + χke − 2χ1

]
− εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1 − χb

]
gV1 = (w − 1)ζ + εc

[
(wΛ̄∗ − Λ̄)ζ + (w − 1)(χke − 2χ1)

]
−εb

[
(Λ̄∗(2w + 1) − Λ̄(w + 2))ζ − 2(w2 − 1)ζ1 − (w − 1)χb

]
gV2 = 2εc(ζ1 − χ2)

gV3 = −ζ − εc

[
wΛ̄∗−Λ̄

w+1
ζ + 2ζ1 + χke − 2χ1 + 2χ2

]
+εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1 − χb

]
(G.43)

We use the same tricks for χs, then

gA = ζ + εc

[
wΛ̄∗−Λ̄

w+1
ζ
]
− εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1

]
gV1 = (w − 1)ζ + εc(wΛ̄∗ − Λ̄)ζ

−εb

[
(Λ̄∗(2w + 1) − Λ̄(w + 2))ζ − 2(w2 − 1)ζ1

]
gV2 = 2εcζ1

gV3 = −ζ − εc

[
wΛ̄∗−Λ̄

w+1
ζ + 2ζ1

]
+εb

[
Λ̄∗(2w+1)−Λ̄(w+2)

w+1
ζ − 2(w − 1)ζ1

]
(G.44)
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