Event Selection using Run2
Kenji Hamano
Last modified : Jun 20, 2007
Back to Home
Back to privious page
Event Selection
R16b skims Run2 was used.
On Peak data luminosity: 59.4 fb-1
All MC numbers are luminosity normalised to OnPeak data
0. BToDlnu skim
Delta_S / S = 0.0195171 (D0), 0.0268934 (D+)
Number of candidates & Delta_S / S
1. Tihghter Kaon Selection
Use KMicroNotPion selector
Delta_S / S = 0.0115441 (D0), 0.0268934 (D+)
Number of candidates & Delta_S / S
3. D and B vertexing
Tihghter Kaon Selection is applied.
D and B vertexing using TreeFitter
Number of candidates & Delta_S / S
B=Non,D=Non
B=Non,D=0.0001
B=Non,D=0.001
B=Non,D=0.01
B=Non,D=0.1
B=0.0001,D=Non
B=0.0001,D=0.0001
B=0.0001,D=0.001
B=0.0001,D=0.01
B=0.0001,D=0.1
B=0.001,D=Non
B=0.001,D=0.0001
B=0.001,D=0.001
B=0.001,D=0.01
B=0.001,D=0.1
B=0.01,D=Non
B=0.01,D=0.0001
B=0.01,D=0.001
B=0.01,D=0.01
B=0.01,D=0.1
B=0.1,D=Non
B=0.1,D=0.0001
B=0.1,D=0.001
B=0.1,D=0.01
B=0.1,D=0.1
Err (D0 only) | no cut | D prob > 0.0001 | 0.001 | 0.01 | 0.1 |
no cut | 0.01154 | 0.01055 | 0.01043 | 0.01027 | 0.01031 |
B prob > 0.0001 | 0.00974 | 0.00973 | 0.00968 | 0.00959 | 0.00969 |
0.001 | 0.00955 | 0.00955 | 0.00953 | 0.00947 | 0.00959 |
0.01 | 0.00929 | 0.00929 | 0.00929 | 0.00928 | 0.00943 |
0.1 | 0.00911 | 0.00911 | 0.00911 | 0.00911 | 0.00925 |
Err (D+ only) | no cut | D prob > 0.0001 | 0.001 | 0.01 | 0.1 |
no cut | 0.02689 | 0.02275 | 0.02252 | 0.02223 | 0.02226 |
B prob > 0.0001 | 0.02168 | 0.02165 | 0.02152 | 0.02131 | 0.02139 |
0.001 | 0.02131 | 0.02131 | 0.02127 | 0.02112 | 0.02124 |
0.01 | 0.02079 | 0.02079 | 0.02079 | 0.02077 | 0.02099 |
0.1 | 0.02038 | 0.02038 | 0.02038 | 0.02038 | 0.02056 |
Best uncertainty is given by D prob > 0.01 and B prob > 0.1
But, since no big difference on uncertainties, we prefer looser cut.
Thus, the best cut is D prob > 0.001 and B prob > 0.01
4. Thrust cut
Tihghter Kaon Selection is applied.
D prob > 0.001 and B prob > 0.01 applied
Using thrust of Dl and non-Dl, apply cuts on |cosTheta_{Dl-nonDl}|
Plot (D0)
Plot (D+)
Number of candidates & Delta_S / S
No cut
0.96
0.92
0.88
0.84
0.80
(D0) | Err |
no cut | 0.00929 |
|cosTheta| < 0.96 | 0.00823 |
0.92 | 0.00764 |
0.88 | 0.00725 |
0.84 | 0.00697 |
0.80 | 0.00680 |
(D+) | Err |
no cut | 0.02079 |
|cosTheta| < 0.96 | 0.01889 |
0.92 | 0.01770 |
0.88 | 0.01690 |
0.84 | 0.01635 |
0.80 | 0.01600 |
Best uncertainty is given by |cosTheta_{Dl-nonDl}| < 0.80
But, since no big difference on uncertainties after 0.92, we prefer looser cut.
Thus, the best cut is |cosTheta_{Dl-nonDl}| < 0.92
Summary of cuts
Err | D0 | D+ |
BToDlnu skim | 0.01952 | 0.0269 |
KMicroNotPion | 0.01154 | 0.0269 |
Vtx B=0.01, D=0.001 | 0.00929 | 0.0208 |
|cosTheta| < 0.92 | 0.00764 (39 %) | 0.0177 (66 %) |
Nunber of signal candidates | D0 | D+ |
BToDlnu skim | 300194 | 177725 |
KMicroNotPion | 292993 (97.6 %) | 177725 (100 %) |
Vtx B=0.01, D=0.001 | 276669 (92.2 %) | 161267 (90.7 %) |
|cosTheta| < 0.92 | 250420 (83.5 %) | 146269 (82.3 %) |
Cut flow table
Yeild = sideband subtracted number of candidates.
0BToDlnuSkim
1TightKCuts
3VtxCuts
4ThrustCuts
D0 | OnPeak - Off Peak yeild | efficiency | cumultive efficiency | BBbar MC yeild | efficiency | cumultive efficiency |
BToDlnu skim | 381377 | n/a | n/a | 411274 | n/a | n/a |
Tight K | 379722 | 0.9957 | 0.9957 | 405898 | 0.9869 | 0.9869 |
Vertexing | 340517 | 0.8968 | 0.8929 | 372283 | 0.9172 | 0.9052 |
Thrust cut | 302788 | 0.8892 | 0.7939 | 332782 | 0.8939 | 0.8091 |
D+ | OnPeak - Off Peak yeild | efficiency | cumultive efficiency | BBbar MC yeild | efficiency | cumultive efficiency |
BToDlnu skim | 232505 | n/a | n/a | 283572 | n/a | n/a |
Tight K | 232509 | 1.0000 | 1.0000 | 283572 | 1.0000 | 1.0000 |
Vertexing | 199994 | 0.8602 | 0.8602 | 246511 | 0.8693 | 0.8693 |
Thrust cut | 178595 | 0.8930 | 0.7681 | 217339 | 0.8817 | 0.7664 |