
Problem 2.2
(a) We are given the action to be:

S =
∫

(∂µφ
∗∂µφ−m2φ∗φ)d4x (1)

Then we can easily read off the Lagrangian density to be:

L = ∂µφ
∗∂µφ−m2φ∗φ (2)

⇒ L =
·
φ∗

·
φ −∂aφ

∗∂aφ−m2φ∗φ (3)

Then the momentum densities are:

π∗ =
∂L

∂
·
φ
∗ =

·
φ (4)

π =
∂L

∂
·
φ

=
·
φ
∗

(5)

The momenta can be easily obtained by integrating the momentum den-
sities through all space.

p =
∫ ·
φ
∗
d3x (6)

p∗ =
∫ ·
φ d3x (7)

The Hamiltonian density then can be calculated:

H = π
·
φ +π∗

·
φ
∗
−L

⇒ H = ππ∗ + π∗π − ππ∗ +∇φ∗ · ∇φ+m2φ∗φ

⇒ H = π∗π +∇φ∗ · ∇φ+m2φ∗φ

(Again, the Hamiltonian can be easily found by integrating H over all
space.)

The canonical commutation relations are as follows:

[φ(x), π(y)] = iδ(3)(x− y) (8)

[φ∗(x), π∗(y)] = iδ(3)(x− y) (9)

whereas the rest of the commutation relations vanish because:

1



1. the commutation relation is between a field and a momentum of a
different field; or

2. the commutation relation involves the same field but with different
coordinates

The Heisenberg equation for motion is given by:

i
∂

∂t
v = [v,H] (10)

Hence

i
∂

∂t
φ(x, t) = [φ(x, t),

∫
d3x′{π∗π(x′, t) +∇φ∗ · ∇φ(x′, t) +m2φ∗φ(x′, t)}]

To proceed, one must pull the φ out from the gradient operator. To do that,
recall Green’s Second Identity:

Theorem 1 (Green’s Second Identity) LetM be a smooth 3-dimensional
oriented manifold with boundary ∂M. For smooth functions φ and ψ, the
following holds true:∫

M
∇φ · ∇ψdV =

∫
∂M

φ(∇ψ) · n̂da−
∫
M
φ∇2ψdV (11)

where n̂ is the outward normal, and dV and da are the volume element and
the area element for M and ∂M respectively.

For fields to be physical, they must vanish at infinitely far away. Hence

i
∂

∂t
φ(x, t) = [φ(x, t),

∫
d3x′{π∗π(x′, t)− φ(x′, t)∇2φ∗(x′, t) +m2φ∗φ(x′, t)}]

Now, note that the only quantity that does not commute with φ, as previously
found, is π. However, to get from φ∗ to π one applies the time derivative.
Laplacian, a spatial derivative operator, acting on φ∗ does not produce π.
Therefore one can safely drop the last two terms in the integrand out of the
commutation relation.

i
∂

∂t
φ(x, t) =

∫
d3x′[φ(x, t), π∗π(x′, t)]

=
∫
d3x′

(
π∗(x′, t)[φ(x, t), π(x′, t)] + [φ(x, t), π∗(x′, t)]π(x′, t)

)
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=
∫
d3x′iδ3(x− x′)π∗(x′, t)

= iπ∗(x, t)

i
∂

∂t
π(x, t) = [π(x, t),

∫
d3x′{π∗π(x′, t) +∇φ∗ · ∇φ(x′, t) +m2φ∗φ(x′, t)}]

= [π(x, t),
∫
d3x′{π∗π(x′, t) + φ(x′, t)(−∇2 +m2)φ∗(x′, t)}]

=
∫
d3x′(−i)δ3(x− x′)(−∇2 +m2)φ∗(x′, t)

= −i(−∇2 +m2)φ∗(x, t)

(Green’s Second Identity is used to go from the first equality to the second
equality.)

The results for the complex conjugate φ∗ and π∗ are very similar:

i
∂

∂t
φ∗(x, t) = iπ(x, t)

i
∂

∂t
π∗(x, t) = −i(−∇2 +m2)φ(x, t)

Combining the above results, one obtains:

− ∂2

∂t2
φ = (−∇2 +m2)φ

− ∂2

∂t2
φ∗ = (−∇2 +m2)φ∗

Precisely the Klein-Gordon Equations.
(b) Since the field is no longer purely real, the coefficients before eipµxµ

and
e−ipµxµ

need not to be equal.
Introduce lowering and raising operators ap and b†p for the field φ such

that:

φ(x) =
∫ d3p

(2π)3

1√
2ωp

(ape
ipµxµ

+ b†pe
−ipµxµ

)

=
∫ d3p

(2π)3

1√
2ωp

(ap + b†−p)eipµxµ

(12)

The second term in the integration is changed via the transformation pµ →
−pµ, and the relation ωp = ω−p is employed.
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Then its complex conjugate φ∗ is:

φ∗(x) =
∫ d3p

(2π)3

1√
2ωp

(bpe
ipµxµ

+ a†pe
−ipµxµ

)

=
∫ d3p

(2π)3

1√
2ωp

(bp + a†−p)eipµxµ

(13)

From earlier results, π = ∂
∂t
φ∗ and π∗ = ∂

∂t
φ. Recall also that ∂

∂t
eipµxµ

=
∂
∂t
ei(ωpt−p·x) = iωpe

ipµxµ
. Hence:

π(x) =
∫ d3p

(2π)3
i

√
ωp

2
(bpe

ipµxµ − a†pe
−ipµxµ

)

=
∫ d3p

(2π)3
i

√
ωp

2
(bp − a†−p)eipµxµ

π∗(x) =
∫ d3p

(2π)3
i

√
ωp

2
(ape

ipµxµ − b†pe
−ipµxµ

)

=
∫ d3p

(2π)3
i

√
ωp

2
(ap − b†−p)eipµxµ

(14)

Hence the Hamiltonian density can be written as follows:

H =
∫ d3pd3p′

(2π)6

(
−
√
ωpωp′

2
(ap − b†−p)(bp′ − a†−p′)ei(p+p′)·x +

−p′ · p +m2

2
√
ωpωp′

(bp + a†−p)(ap′ + b†−p′)ei(p+p′)·x
)

(15)

The Hamiltonian is just H integrated over all space. However, when doing
that, only the exponential gets integrated, and the result yields a Dirac Delta
function (2π)3δ3(p + p′). Then integrate over p′:

H =
∫ d3p

(2π)3

(
−
√
ωpω−p

2
(ap − b†−p)(b−p − a†p)

+
p · p +m2

2
√
ωpω−p

(bp + a†−p)(a−p + b†p)
)

=
∫ d3p

(2π)3

(
− ωp

2
(apb−p − apa

†
p − b†−pb−p + b†−pa

†
p)

+
ω2

p

2ωp

(bpa−p + bpb
†
p + a†−pa−p + a†−pb

†
p)

)
(16)
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where we have used ωp = ω−p =
√

p · p +m2.

H =
∫ d3p

(2π)3

(ωp

2
(apa

†
p + a†pap) +

ωp

2
(bpb

†
p + b†pbp)

)
=

∫ d3p

(2π)3

(ωp

2
([ap, a

†
p] + 2a†pap) +

ωp

2
([bp, b

†
p] + 2b†pbp)

)
(17)

This Hamiltonian gives rise to two particles because of the two distinct ladder
operators, both with mass m.
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