Problem 2.2
(a) We are given the action to be:

S = [(0,0°0"0 — m¢7o)d's (1)
Then we can easily read off the Lagrangian density to be:
L=0,6"0"p —m?¢*¢ (2)
= L =¢"0 —0,0"0"¢ — m*¢"6 (3)
Then the momentum densities are:
oL
T = S :QS (4)
d¢
T = — =¢ (5)
d¢

The momenta can be easily obtained by integrating the momentum den-
sities through all space.

p = [6da (6)
vo= [ods (7)
The Hamiltonian density then can be calculated:
H =« <b +7T*¢ —L

=H = it +1'1m— 7t + Vo' - Vo +m2o*e
=H = 71+ Ve Vo+m?e o

(Again, the Hamiltonian can be easily found by integrating H over all

space.)
The canonical commutation relations are as follows:
[6(x),7(y)] = 6@ (x—y) (8)
(0" (x), 7" (y)] = 6P (x—y) 9)

whereas the rest of the commutation relations vanish because:



1. the commutation relation is between a field and a momentum of a
different field; or

2. the commutation relation involves the same field but with different
coordinates

The Heisenberg equation for motion is given by:
0
iav = [v, H] (10)

Hence

;Mxﬂ - wkxx/dkﬁﬁﬂf¢y+vw-VM#¢%HMW¢@%”]

To proceed, one must pull the ¢ out from the gradient operator. To do that,
recall Green’s Second Identity:

Theorem 1 (Green’s Second Identity) Let M be a smooth 3-dimensional
oriented manifold with boundary OM. For smooth functions ¢ and 1, the
following holds true:

/ Vé - VidV = / $(Vi) - da — / SV2pdV (11)

where 11 is the outward normal, and dV and da are the volume element and
the area element for M and OM respectively.

For fields to be physical, they must vanish at infinitely far away. Hence

PDoct) = [60ct), [ d (1) o V(K1) + (K, 1)
Now, note that the only quantity that does not commute with ¢, as previously
found, is m. However, to get from ¢* to m one applies the time derivative.
Laplacian, a spatial derivative operator, acting on ¢* does not produce 7.
Therefore one can safely drop the last two terms in the integrand out of the
commutation relation.

gtgb(x 1) = / B [$(x, 1), 71 (x, )]
= /dgx’(ﬂ*(x’,t) [p(x, 1), m(x', 1)] + [(x, t),?T*(X/,t)]T((X/,t))



= /d3x’i53(x —x ¥ (X, t)
= im"(x,1)
; 9 3.0 [ % ! * ! 2 1k /
zaw(x, t) = [7(x, t),/d Z{m*m(x',t) + Vo* - Vo(x',t) + m ¢ p(x', 1) }]
= [rlxt), [ {nw(d0) + 6 (V2 + m?)o (<, )
- / B (—)8 (x — ') (=V2 + m2)d* (X, 1)
= —i(=V?+m?)¢*(x,1)

(Green’s Second Identity is used to go from the first equality to the second
equality.)
The results for the complex conjugate ¢* and 7* are very similar:

0 . o
zagb (x,t) = in(x,t)
0

Z'E?T*(X, t) = —i(=V?+m?)p(x,1)

Combining the above results, one obtains:
92
“9p? = (=V*+m*)¢
0 2 2

Precisely the Klein-Gordon Equations.
(b) Since the field is no longer purely real, the coefficients before e»*" and
e~ Pu*" need not to be equal.

Introduce lowering and raising operators ap, and bL for the field ¢ such
that:

d3p 1 ipyxt T —ipuzH
H(x) = /(27?)3%(%6 M ble )

= [t o (12)

The second term in the integration is changed via the transformation p, —
—pu, and the relation wp, = w_p is employed.

3



Then its complex conjugate ¢* is:

560 = [ L ena p gfene)
@) Top P P

- / (gﬂ'l))3 \/Ql(*d_p(bp + aip)eipuxu (13)

From earlier results, 7 = 2¢* and 7 = 2¢. Recall also that 2e?»™" =

D St
D eilwrt=P) — jeu . Hence:

d3p oW ippxh —ip,xt
(x) = /(QW)?)“/QP(bpep“ — ale ")

d3p . W T ippat
- /(zw)?’l\/zp(bp_“—r’)ep“

* d3p e 1PLT —ipuT
™(x) = /(2ﬂ)3z ?p(apep“ “—bLe puty

— [ i = o e (14

Hence the Hamiltonian density can be written as follows:
Ppd’p/ VWpWp/ i x
o= / (2m)6 ( 2 (ap = bLp) (b — al )’ PHPI* 4
-p' -p+m?
2\ /WpWpy
The Hamiltonian is just H integrated over all space. However, when doing

that, only the exponential gets integrated, and the result yields a Dirac Delta
function (27)363(p + p’). Then integrate over p':

d>p VPpW_p :
H = / (27’(’)3 ( - 9 (a’P - b—p)(b—P - CLL)
p-p+m’
2\ /Wpw_p

d3
= / P ( - ﬁ(apb_p - apafo — bipb_p + b al)

(bp + alp)(apy + bl ) HP0x) (15)

+ (bp + al p)(a_p + b))

@2rp\ " 2 —»fp
p t i
+ﬁ(bpa_p + bpr) +alya_p + a_pb;r,)) (16)



where we have used wp, = w_p, = /p-p +m?.

dp jw w
H = / 2n)? (f(apai, +alap) + %(bpb;f) + b;bp))

-/ (;ij;g(u;"<[apaal]+2a£ap)+“‘;"([bp,bLszpr)) (17)

This Hamiltonian gives rise to two particles because of the two distinct ladder
operators, both with mass m.



