
Peskin and Schroeder: 3.7
(a) Compute the transformation properties under P, C, and T of the anti-
symmetric tensor fermion bilinears, ψ̄σµνψ, with σµν = i

2 [γµ, γν ].
Solution:
Applying the symmetry operators P,C, and T individually, but keeping in
mind that square of each operator is the identity operator.

Pψ̄σµνψP = Pψ̄PPσµνψP

= η∗aψ̄γ
0σµνPψP

= η∗aψ̄γ
0σµνηaγ

0ψ

=
i

2
ψ̄γ0 [γµ, γν ] γ0ψ

Consider the various different cases:
Case (1): when µ or ν = 0 (they cannot both be zero, or the expression
will vanish). Then when we try to move γ0 around the commutator, one
minus sign will be introduced (because the γ0 will commute with the γ0 in
the γνγµ while anticommute with the other).

Pψ̄σµνψP = − i
2
ψ̄ [γµ, γν ] γ0γ0ψ

= −ψ̄σµνψ

Case (2): when neither µ nor ν is zero. Then two minus signs will be
introduced as the γ0 is moved around the commutator:

Pψ̄σµνψP = ψ̄σµνψ

In short:
Pψ̄σµνψP = (−1)µ (−1)ν ψ̄σµνψ

Next for T.

T ψ̄σµνψT = T ψ̄TTσµνψT

= − i
2
ψ̄

(
−γ1γ3

)
T [γµ, γν ]ψT

= − i
2
ψ̄

(
−γ1γ3

)
[(γµ)∗ , (γν)∗]

(
γ1γ3

)
ψ
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Again, split into two cases:
Case (1): Either µ or ν is 2 (can’t be both 2), while the other is 0. Then:

[(γµ)∗ , (γν)∗] = − [γµ, γν ]

Furthermore, each of γ1 and γ3 will anticommute with the γ matrices in the
commutator, introducing four minus signs in total. Hence:

T ψ̄σµνψT =
i

2
ψ̄ [γµ, γν ]

(
−γ1γ3

) (
γ1γ3

)
ψ

=
i

2
ψ̄ [γµ, γν ]

(
γ1γ1γ3γ3

)
ψ

= ψ̄σµνψ

Case (2): One of µ and ν is 2, while the other is 1 or 3. Then:

[(γµ)∗ , (γν)∗] = − [γµ, γν ]

Moreover, either one of γ1 or γ3 is going to commute with one of the γ
matrices in the commutator, and so will only introduce one less minus sign
as before (therefore contributing three minus signs in total). As a result:

T ψ̄σµνψT = − i
2
ψ̄ [γµ, γν ]

(
−γ1γ3

) (
γ1γ3

)
ψ

= − i
2
ψ̄ [γµ, γν ]

(
γ1γ1γ3γ3

)
ψ

= −ψ̄σµνψ

Case (3): Neither one of µ or ν is 2, and only one of µ and ν is 1 or 3. Then:

[(γµ)∗ , (γν)∗] = [γµ, γν ]

As we “push” the γ1γ3 matrices from the left to the right of the commutator,
we will introduce three minus signs in total. Therefore:

T ψ̄σµνψT =
i

2
ψ̄ [γµ, γν ]

(
−γ1γ3

) (
γ1γ3

)
ψ

=
i

2
ψ̄ [γµ, γν ]

(
γ1γ1γ3γ3

)
ψ

= ψ̄σµνψ
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Case (4): µ = 1 and ν = 3 or vice versa. Their complex conjugates (NOT
Hermitian conjugates) will then be themselves since the two γ matrices are
real.
Again, bring γ1 and γ3 to the right of the commutator. Each of these two
will commute with exactly one of the matrices in the commutator, so at the
end only two minus signs will be introduced. The end result is thus:

T ψ̄σµνψT = ψ̄σµνψ

In short:
T ψ̄σµνψT = − (−1)µ (−1)ν ψ̄σµνψ

Last but not least, C:

Cψ̄σµνψC = Cψ̄CCσµνψC

=
(
−iγ0γ2ψ

)T
σµν (−i)

(
ψ̄γ0γ2

)T

= −
(
γ0γ2ψ

)T
σµν

(
ψ̄γ0γ2

)T

Follow the advice from the textbook, we’ll write this expression in indices:

Cψ̄σµνψC = −
(
γ0γ2ψ

)
a
σµν

ab

(
ψ̄γ0γ2

)
b

= − i
2
γ0

acγ
2
cdψd

(
γµ

aeγ
ν
eb − γν

aeγ
µ
eb

)
ψ̄fγ

0
fgγ

2
gb

=
i

2
ψ̄fγ

0
acγ

2
cd

(
γµ

aeγ
ν
eb − γν

aeγ
µ
eb

)
γ0

fgγ
2
gbψd

=
i

2
ψ̄fγ

0
fgγ

2
gb

(
γµ

aeγ
ν
eb − γν

aeγ
µ
eb

)
γ0

acγ
2
cdψd

=
i

2
ψ̄fγ

0
fgγ

2
gb

(
γν

ebγ
µ
ae − γ

µ
ebγ

ν
ae

)
γ0

acγ
2
cdψd

(The third equality has a minus sign introduced due to anticomutativity of
fermions). We consider the following different cases separately:
Case (1): µ = 0 and ν = 2 or vice versa. Then:

(γµ)T = γµ

And the same applies to γν . Hence:

Cψ̄σµνψC =
i

2
ψ̄fγ

0
fgγ

2
gb

(
γν

beγ
µ
ea − γ

µ
beγ

ν
ea

)
γ0

acγ
2
cdψd

3



=
i

2
ψ̄γ0γ2 [γν , γµ] γ0γ2ψ

= − i
2
ψ̄γ0γ2 [γµ, γν ] γ0γ2ψ

Bringing the first γ0γ2 will introduce two minus signs from anticomutative
properties of the γ matrices.

Cψ̄σµνψC = − i
2
ψ̄ [γµ, γν ] γ0γ2γ0γ2ψ

= +
i

2
ψ̄ [γµ, γν ] γ0γ0γ2γ2ψ

= − i
2
ψ̄ [γµ, γν ]ψ

= −ψ̄σµνψ

Case (2): µ = 1 and ν = 3 or vice versa. Then the γ matrices in the com-
mutator will be antisymmetric. The two minus signs introduced by taking
the transpose of the γ matrices will then be cancelled, so up to this step the
results are identical to what is given in Case (1).
The next place where minus signs can be introduced is when one tries to
bring the γ0γ2 around the commutator. Each of γ0 and γ2 will anticommute
with both γµ and γν , introducing four minus signs in total. Again, the sign
is then the same as that in Case (1).

Case (3): Neither of the above (that is one of µ or ν is 0 or 2, while the
other is 1 or 3). Then one of the γ matrices in the commutator will be
antisymmetric, and when we take the transpose, one minus signs will be
introduced.
However, when one tries to bring the γ0γ2 around the commutator, one of
which will anticommute with only one of γµγν , while the other anticommute
with both of them. Therefore here three minus signs will be introduced.
As a consequence, four minus signs in total will be introduced, and hence
the sign here is also the same as that given in Case (1).
In short:

Cψ̄σµνψC = −ψ̄σµνψ
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(b) Let φ (x) be a complex-valued Klein-Gordon field. Find unitary op-
erators P, C and an antiunitary operator T (all in terms of their action on
the annihilation operators ap and bp for the Klein-Gordon particles and an-
tiparticles) that give the following transformation of the Klein-Gordon field:

Pφ (t,x)P = φ (t,−x) ;
Tφ (t,x)T = φ (−t,x) ;
Cφ (t,x)C = φ∗ (t,x) ;

Find the transformation properties of the components of the current

Jµ = i (φ∗∂µφ− ∂µφ∗φ)

under P, C and T.
Recall that the field operator φ can be written in terms of the creation and
annihilation operators (there are two sets of such operators because the field
is complex):

φ (x) =
∫

d3p

(2π)3
1√
2ωp

(
ap + b†−p

)
eipµxµ

We’re given that:

Pφ (x, t)P = φ (−x, t)

⇒
∫

d3p

(2π)3
1√
2ωp

P
(
ap + b†−p

)
Peipµxµ

=
∫

d3p

(2π)3
1√
2ωp

(
ap + b†−p

)
eipµx̃µ

(where x̃µ = (t,−x)).
If we change pµ to p̃µ, where p̃µ =

(
p0,−p

)
, we discover that xµpµ = x̃µp̃µ.

To change from pµ to p̃µ, we merely need to make a change of variable from
p to -p, the rest remains the same for the RHS. Hence:∫

d3p

(2π)3
1√
2ωp

P
(
ap + b†−p

)
Peipµxµ

=
∫

d3p

(2π)3
1√
2ωp

(
a−p + b†p

)
eipµxµ

So the transformation rules for P are PapP = a−p and PbpP = b−p.
Now for the transformation rule for T. We’re given this time that:

Tφ (x, t)T = φ (x,−t)

⇒
∫

d3p

(2π)3
1√
2ωp

T
(
ap + b†−p

)
eipµxµ

T =
∫

d3p

(2π)3
1√
2ωp

(
ap + b†−p

)
e−ipµx̃µ

⇒
∫

d3p

(2π)3
1√
2ωp

T
(
ap + b†−p

)
Te−ipµxµ

=
∫

d3p

(2π)3
1√
2ωp

(
ap + b†−p

)
e−ipµx̃µ
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The rest will be very similar to the case where we calculate the transforma-
tion of the creation and annihilation operators under P. Hence the trans-
formation rules for T are TapT = a−p and TbpT = b−p. This is expected
because the creation and annihilation operators are independent from spa-
tial coordinates. While P flips the direction for both the momentum and
space, T flips only the direction of momentum, which is the same thing for
the creation and annihilation operators.
However, one important difference between P and T is that P is a unitary
operator whereas T is an antiunitary operator.
Last but not least, the C operator:

Cφ (x, t)C = φ∗ (x, t)

⇒
∫

d3p

(2π)3
1√
2ωp

C
(
ap + b†−p

)
eipµxµ

C =
∫

d3p

(2π)3
1√
2ωp

(
bp + a†−p

)
eipµxµ

At this point, we can compare both sides and conclude that the transforma-
tion rule is CapC = bp and CbpC = ap.
For the transformation of the charge current:

PJµP = iP (φ∗∂µφ− ∂µφ∗φ)P
= i (φ∗ (t,−x) ∂µφ (t,−x)− ∂µφ∗ (t,−x)φ (t,−x))
= (−1)µ i (φ∗∂µφ− ∂µφ∗φ)

where we employ the shorthand as in the textbook: (−1)µ ≡ −1 if µ = 1, 2, 3
and 1 if otherwise.
For T, since it is antiunitary, pushing it through the “i” at the beginning
would introduce a minus sign:

TJµT = −iT (φ∗∂µφ− ∂µφ∗φ)T
= −i (φ∗ (−t,x) ∂µφ (−t,x)− ∂µφ∗ (−t,x)φ (−t,x))
= (−1)µ i (φ∗∂µφ− ∂µφ∗φ)

Last but not least, for C:

CJµC = iC (φ∗∂µφ− ∂µφ∗φ)C
= i (φ∂µφ∗ − ∂µφφ∗)
= −Jµ

With CPT combined, Jµ turns out to be odd.
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(c) Show that any Hermitian Lorentz-scalar local operator built from
ψ(x), φ(x) and their conjugates has CPT = +1.
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