Input parameters

Experimental jets

- initial 4-vectors $p_j^m = (E_j^m, \vec{p}_j^m)$ j = 0,1...5
- we set $m_i^m \equiv 0$
 - should not do this when considering merged partons
- each jet therefore characterized by the triplet

$$\left(E_{j}^{m},\eta_{j}^{m},\varphi_{j}^{m}\right) \qquad \left|\vec{p}_{j}^{m}\right|=E_{j}^{m}$$

for now assume no b-jet tagging

Input parameters

Truth partons

- initial 4-vectors $p_j = (E_j, \vec{p}_j)$ j = 0,1...5
- characterized by

$$(m_j, E_j, \eta_j, \varphi_j)$$

$$E_j^2 = \left| \vec{p}_j \right|^2 + m_j^2$$

- we adopt the labelling
 - (0, 1, 2, 3, 4, 5) = (u, dbar, ubar, d, b, bbar)

Jet uncertainties

- Consider jets with 1-to-1 jet-parton matching
 - for example use matching search with $\Delta R < 0.2$
 - study the quantities

$$\Delta E \equiv E^m - E$$
 $\Delta \eta \equiv \eta^m - \eta$ $\Delta \phi \equiv \phi^m - \phi$

- obtain averages $\langle \Delta E \rangle$, $\langle \Delta \eta \rangle$, $\langle \Delta \phi \rangle$
- obtain rms $\sigma_E \equiv \text{rms}(\Delta E)$, $\sigma_{\eta} \equiv \text{rms}(\Delta \eta)$, $\sigma_{\varphi} \equiv \text{rms}(\Delta \varphi)$
- for now as a function of E^m , η^m
- for now, ignore possible correlations between these quantities
- need to verify if they follow a Gaussian distribution or not for a given E^m, η^m

Jet uncertainties

- for now, only consider uncertainties in E^m
 - only need σ_E as a function of E^m, η^m
 - ideally, one should consider as a function of E, η
 - ignore biases (non zero averages) for now
 - assume Gaussian distribution

Fully hadronic decay kinematic fit

- For now, consider a simple chi2 fit
 - assume jet direction exact
 - constraint both W masses
 - demand that both top have the same mass
 - consider Gaussian, not Breit-Wigner, for W and top masses
 - for a given jet hypothesis consider the chi2

$$\chi^{2} = \sum_{j=0}^{5} \left(\frac{E_{j}^{m} - E_{j}'}{\sigma_{Ej}} \right)^{2} + \left(\frac{M_{W^{+}}' - M_{W}}{\Gamma_{W}} \right)^{2} + \left(\frac{M_{W^{-}}' - M_{W}}{\Gamma_{W}} \right)^{2} + \left(\frac{M_{W^{-}}' - M_{W}}{\Gamma_{W}} \right)^{2} + \left(\frac{M_{W^{-}}' - M_{W}}{\Gamma_{W}} \right)^{2}$$

- minimize this chi2
- the free parameters are the six fit jet energies E'_{i}

Fully hadronic decay kinematic fit

- start each fit with $E'_i = E^m_i$
- in the fit use

$$p'_{j} = \left(E'_{j}, \ E'_{j} \hat{p}^{m}_{j}\right)$$

$$M'_{W^{+}} = \sqrt{\left(p'_{0} + p'_{1}\right)^{2}} \qquad M'_{W^{-}} = \sqrt{\left(p'_{2} + p'_{3}\right)^{2}}$$

$$M'_{t} = \sqrt{\left(p'_{0} + p'_{1} + p'_{4}\right)^{2}} \qquad M'_{tbar} = \sqrt{\left(p'_{2} + p'_{3} + p'_{5}\right)^{2}}$$

• use the same values as used in the generation for $M_{\rm W}, \, \Gamma_{\rm W}, \, \Gamma_{\rm t}$