PHYS506B Assignment #1

given 21/01/2005 due 04/02/2005

1 Let *A* be an operator with eigenvalue *a* when acting on a state. Show that the operator *B* that ^{10pts} satisfies $[A, B] = \alpha B$

will, upon acting on the state, raise the corresponding eigenvalue of A by α .

2 Find the value of T^2 for SU(3) in the representations **6**, **8**, **15**, **15'**. 20pts

3 For SU(3), find the irreducible multiplet decomposition of $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}^*$. Can a colour singlet 30pts made of three quarks and one antiquark exist?

4 Consider the SU(*n*) algebra $[T_a, T_b] = i f_{abc} T_c$ *a*, *b*, *c* = 1, 2, ..., $n^2 - 1$ ^{20pts} where f_{abc} are real structure constants of the group. Consider the normalization $\text{Tr}[T_a T_b] = \kappa \delta_{ab}$ where κ is real. Show this implies that f_{abc} is totally antisymmetric in all three indices.

5 Consider a Lagrangian density *I* that is form and scale invariant under a pure (infinitesimal) 20pts space-time translation

$$\delta x^{\mu}(x) = \delta^{\mu}$$
 (constants) $\delta \phi_i(x) = 0$ (no mixing of fields)

Show that Noether's theorem yields the continuity equation

$$\partial_{\mu}T^{\mu\nu} = 0 \quad \text{where} \quad T^{\mu\nu} = -\mathscr{G} \cdot g^{\mu\nu} + \sum_{i=1}^{n} \frac{\partial \mathscr{G}}{\partial \left(\partial_{\mu} \varphi_{i}\right)} \partial^{\nu} \varphi_{i}$$

PHYS506B, Spring 2005

Assignment #1

PHYS506B Assignment #1

given 21/01/2005 due 04/02/2005

6 Consider a Lagrangian density *I* that is form and scale invariant under an homogeneous 30pts (infinitesimal) Lorentz transformation

$$\delta x^{\mu}(x) = \varepsilon^{\mu\nu} x_{\nu} \quad \text{Lorentz rotation} \quad \varepsilon^{\mu\nu} = -\varepsilon^{\nu\mu}$$
$$\delta \phi_{i}(x) = \varepsilon_{\mu\nu} \frac{1}{2} \sum_{j=1}^{n} Z_{ij}^{\mu\nu} \phi_{j}(x) \qquad Z_{ij}^{\mu\nu} = -Z_{ij}^{\nu\mu}$$

Show that Noether's theorem yields the continuity equation

$$\partial_{\mu}\mathcal{M}^{\mu\alpha\beta} = 0 \quad \text{where} \quad \mathcal{M}^{\mu\alpha\beta} = -\mathcal{M}^{\mu\beta\alpha} = \left(x^{\alpha}T^{\mu\beta} - x^{\beta}T^{\mu\alpha}\right) + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial\mathscr{D}}{\partial\left(\partial_{\mu}\varphi_{i}\right)} Z_{ij}^{\alpha\beta}\varphi_{j}$$

7 In the case of a scalar field, we have seen that form and scale invariance of \mathscr{S} under 20pts homogeneous Lorentz transformations yield the conserved charges $M^{\alpha\beta}$. We associate

$$\vec{M} = (M^{23}, M^{31}, M^{12})$$

to the conserved angular (in this case orbital only) momentum of the field. Show that the conserved charges M^{0j} yield the centre of energy theorem

$$\frac{\mathsf{d}}{\mathsf{d}t}\vec{X}_{\text{CE}} = \vec{\beta}$$

where $\vec{\beta}$ is the velocity vector of the field, and \vec{X}_{ce} is the center of energy of the field.