PHYS506B Assignment #2

given 08/02/2005 due 08/03/2005

- **1** Since the action is dimensionless, $[S] = M^0$,
- ^{15pts} a) Find the dimension of the Klein-Gordon field. That is, $[\varphi] = M^n$, find n.
 - b) Find the dimension of the Dirac field. That is, $[\psi] = M^n$, find n.
 - c) Find the dimension of the Maxwell field. That is, $[A^{\mu}] = M^n$, find n.
- $\begin{array}{ll} \textbf{2} & \text{From the Lagrangian density} \quad \mathscr{L}_{\text{KG}} = \left(\partial_{\mu}\phi\right)^{*}\left(\partial^{\mu}\phi\right) m^{2}\phi^{*}\phi \\ & \text{obtain the Klein-Gordon equation} \quad \left(\Box + m^{2}\right)\phi = 0 \quad \text{and} \quad \left(\Box + m^{2}\right)\phi^{*} = 0 \\ \end{array}$
- $\begin{array}{ll} \textbf{3} & \text{From the Lagrangian density} \quad \mathscr{L}_{\mathsf{D}} = \overline{\psi} \Big[i \gamma^{\mu} \partial_{\mu} m \Big] \psi \\ & \text{obtain the Dirac equation} \quad \Big(i \gamma^{\mu} \partial_{\mu} m \Big) \psi = 0 \quad \text{and} \quad i \partial_{\mu} \overline{\psi} \gamma^{\mu} + m \overline{\psi} = 0 \\ \end{array}$
- From the information given in the notes, obtain the result quoted on page 117 of the notes, U(1) Gauge Invariance, Higgs Model,

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \sigma \right) \left(\partial^{\mu} \sigma \right) - \mu^{2} \sigma^{2} + \frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \left(q \mathsf{V} \right)^{2} A^{\mu} A_{\mu} + q \mathsf{V} \left(\partial_{\mu} \eta \right) A^{\mu} + \mathscr{L}'_{\mathsf{int}}$$

and obtain \mathscr{L}_{int} and verify that in the unitary gauge it gives the results quoted on page 119.

PHYS506B Assignment #2

given 08/02/2005 due 08/03/2005

6 Consider the local U(1) transformation $\varphi \to \varphi' = \exp(-i\kappa\varepsilon(x))\varphi$

$$D_{\mu} \varphi \to D'_{\mu} \varphi' = \exp(-i\kappa \varepsilon(x)) D_{\mu} \varphi$$
$$D'_{\mu} \equiv \partial_{\mu} + iq\kappa A'_{\mu}$$

obtain the local transformation of the gauge field $A_{\scriptscriptstyle \perp}$.

7 Let $\mathscr D$ be a Lagrangian density that includes the complex scalar doublet φ with associated mass $m_{\mathbb S}$

30pts

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$$
 , the Dirac doublet ψ with associated mass $m_{\rm D}$ $\psi = \begin{pmatrix} \psi^1 \\ \psi^2 \end{pmatrix}$

and that is invariant under Poincaré transformations and under local SU(2) gauge transformations.

Let
$$\mathscr{L}$$
 be of the form $\mathscr{L} = \mathscr{L}_D + \mathscr{L}_S + \mathscr{L}_A + \mathscr{L}_{D+A} + \mathscr{L}_{S+A}$

where the terms are, respectively, pure Dirac field, pure scalar field, pure gauge field, Dirac and gauge fields interaction, and scalar and gauge fields interaction.

- a) Give an expression for \mathcal{L} and for each of the 5 terms above.
- b) Give the gauge transformation law for each field.
- c) Note that there is no term \mathcal{L}_{S+D} . Are any of the following terms valid? Explain why.

c.1)
$$\overline{\psi}\phi_1\psi + \overline{\psi}\phi_2\psi$$

c.2)
$$\overline{\psi}\phi\psi^1 + \overline{\psi}\phi\psi^2$$

c.3)
$$\overline{\psi}\phi + \phi^{\dagger}\psi$$

PHYS506B Assignment #2

given 08/02/2005 due 08/03/2005

8 Consider the pure SU(n) gauge field Lagrangian density

50pts

$$\mathscr{L}_{\mathsf{A}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} \qquad F^a_{\mu\nu} = A^a_{\mu\nu} - g f^{abc} A^b_{\mu} A^c_{\nu} \qquad A^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu}$$

which is invariant under the SU(n) gauge transformation

$$A^{a}_{\mu}T^{a} \xrightarrow{\epsilon^{a}(x)} A^{\prime a}_{\mu}T^{a} = UA^{a}_{\mu}T^{a}U^{-1} + \frac{1}{g}\partial_{\mu}\epsilon^{a}T^{a}$$

$$F^{a}_{\mu\nu}T^{a} \xrightarrow{\epsilon^{a}(x)} F^{\prime a}_{\mu\nu}T^{a} = UF^{a}_{\mu\nu}T^{a}U^{-1}$$

$$U = \exp\left(-i\epsilon^{a}(x)T^{a}\right)$$

$$T^{a}_{\mu\nu}T^{a} = if^{abc}T^{c}$$

a) Use the Euler-Lagrange equations to show that the equations of motion of the fields $A_{\mu}^{\ a}$ are given by $\partial_{\mu}F^{a\mu\nu}-gf^{abc}A_{\mu}^{b}F^{c\mu\nu}=0$

b) We have seen that the gauge current $j_A^{a\mu}$ can be obtained from $\partial_{\mu}F^{a\mu\nu}\equiv j_A^{a\nu}$ $\partial_{\nu}j_A^{a\nu}=0$ This yields $j_A^{a\nu}=gf^{abc}A_{\mu}^bF^{c\mu\nu}$

Obtain this current, up to a multiplicative factor, by using Noether's theorem for the invariance of \mathscr{D}_{A} under the global SU(n) transformation

$$A^a_\mu T^a \xrightarrow{arepsilon^a} A^{\prime a}_\mu T^a = U A^a_\mu T^a U^{-1}$$
 $U = \exp\left(-iarepsilon^a T^a\right)$
 $\left[T^a, T^b\right] = if^{abc} T^c$

where the ε^a are real constants.

Hint: first find δA_{μ}^{a} for the infinitesimal ϵ^{a} and then apply Noether's theorem.