PHYS506B Asignment #3

1 Consider the Dirac spinor field ψ . Let

15pts $\Psi_{L} = P_{L}\Psi$ $\overline{\Psi}_{L} \equiv \overline{(\Psi_{L})} \neq (\overline{\Psi})_{L}$ $\Psi_{R} = P_{R}\Psi$ $\overline{\Psi}_{R} \equiv \overline{(\Psi_{R})} \neq (\overline{\Psi})_{R}$

where

 $P_{\rm L} \equiv \frac{1}{2} \left(1 - \gamma^5 \right)$ $P_{\rm R} \equiv \frac{1}{2} \left(1 + \gamma^5 \right)$

Show that

a) $\overline{\psi}\psi = \overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L}$ b) $(\overline{\psi}_{L}\psi_{R})^{\dagger} = \overline{\psi}_{R}\psi_{L}$ c) $\overline{\psi}\gamma^{\mu}\psi = \overline{\psi}_{L}\gamma^{\mu}\psi_{L} + \overline{\psi}_{R}\gamma^{\mu}\psi_{R}$

From the lecture notes (Running Coupling Constant), obtain the equations a) $\left[-\frac{\partial}{\partial t} + \beta(\alpha) \frac{\partial}{\partial \alpha} \right] R\left(\frac{Q^2}{\mu^2}, \alpha\right) = 0$ b) $\frac{\partial \alpha(Q)}{\partial t} = \beta(\alpha(Q))$ and $\frac{\partial \alpha(Q)}{\partial \alpha} = \frac{\beta(\alpha(Q))}{\beta(\alpha)}$ c) $\left[-\frac{\partial}{\partial t} + \beta(\alpha) \frac{\partial}{\partial \alpha} \right] R(1, \alpha(Q)) = 0$

3 Estimate the energy scale Q at which QED and QCD coupling constants meet. (Compare your ^{25pts} result with the Planck mass scale given by $G^{-1/2}$).

Hint: use the renormalization point $\mu = M_z$ with

$$\alpha_{s}(M_{z}) = 0.118$$
 $\alpha(M_{z}) = 128^{-1}$ $M_{z} = 91.187 \text{ GeV}$

PHYS506B, Spring 2005

Assignment #3

PHYS506B Asignment #3

given 15/03/2005 due 05/04/2005

4 Consider the definition of $\alpha(Q)$: $\ln \frac{Q^2}{\mu^2} = \int_{\alpha(\mu)}^{\alpha(Q)} \frac{dx}{\beta(x)}$

a) Show that to leading order in $\beta(x)$, that is with $\beta(x) = -bx^2$, we obtain the following result for $\alpha(Q)$:

$$\alpha(Q)^{-1} - \alpha(\mu)^{-1} = b \ln \frac{Q^2}{\mu^2}$$

b) Using the next to leading order in $\beta(x)$, that is with $\beta(x)=-bx^2(1+b'x)$, obtain an expression for $\alpha(Q)$.

5 Consider the experimental results $\alpha_s(M_z) = 0.118$ and $M_z = 91.187$ GeV. Evolve this result for α_s 40pts down to the scales Q = 35 GeV and Q = 2 GeV

a) using the leading order running of $\alpha_{\rm s};$

b) using the next to leading order for the running of α_s .

Hint: assume only one sharp mass threshold at the bottom quark mass, that is for each one of questions a) and b)

1) starting from the given $\alpha_s(M_Z)$, using $\mu = M_Z$, find α_s at Q = 35 GeV and at $Q = m_b = 4.3$ GeV;

2) starting from $\alpha_s(m_b)$ found in 1), using $\mu = m_b$, find α_s at Q = 2 GeV.

Photocopy the figure on page 200 and plot your points on it.

N.B.: This treatment neglects a very small α_s shift at m_b when going from $n_f=5$ to $n_f=4$.