PHYS506B Assignment #2 SOLUTIONS given 08/02/2005 due

08/03/2005

Since the action is dim ensi onless, [*S*] = *M*0, **1**

a) Find the dimension of the Klein-Gordon field. That is, [$\scriptstyle\rm (\!\!\rho\!\!\!\,]=M\!\!\!{}^{\scriptstyle\prime\prime}$, find *n*. 15pts

- b) Find the dimension of the Dirac field. That is, [ψ] = *M*ⁿ, find *n*.
- c) Find the dimension of the Maxwell field. That is, [*A*મ] = *M*ⁿ, find *n*.

2 $\, {\bf 2} \quad$ From the Lagrangian density $\, \mathscr{L}_{\mathsf{KG}}= \Bigr(\partial_{\mu} \phi \Bigr)^{\ast} \Bigr(\partial^{\mu} \phi \bigl) \! - \! m^2$ 10pts $\mathscr{L}_{\mathsf{KG}} = (\partial_{\mu}\varphi)^{*} (\partial^{\mu}\varphi) - m^{2}\varphi^{*}\varphi$ obtain the Klein-Gordon equation $\Big(\Box+m^2\Big)\phi=0$ and $\Big(\Box+m^2\Big)\phi^*=0$

3 $\bf 3$ From the Lagrangian density $\mathscr{L}_\mathsf{D} = \overline{\psi} \Big[\, i \gamma^\mu \partial_\mu - m \, \Big] \psi$ 20pts obtain the Dirac equation $\left(i\gamma^\mu\partial_\mu-m\right)\psi=0\quad$ and $\left.i\partial_\mu{\overline{\psi}}\gamma^\mu+m{\overline{\psi}}=0\right.$ $(-m)\psi = 0$ and $i\partial_\mu \overline{\psi} \gamma^\mu + m \overline{\psi} = 0$

4 $\boldsymbol{4}$ From the Lagrangian density $\mathscr{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - j^\mu A_\mu$ $^{20\text{pts}}$ obtain Maxwell's equations $\partial_\text{\tiny u} F^{\mu\nu} = j^\nu$ $\partial^{}_\mu F^{\mu\nu} =$

From the information given in the notes, obtain the result quoted on page 117 of the notes, $U(1)$ Gauge Invariance, Higgs Model, **5**40pts

$$
\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \sigma \right) \left(\partial^{\mu} \sigma \right) - \mu^{2} \sigma^{2} + \frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) - \frac{1}{4} F^{\mu \nu} F_{\mu \nu} + \frac{1}{2} \left(q \nu \right)^{2} A^{\mu} A_{\mu} + q \nu \left(\partial_{\mu} \eta \right) A^{\mu} + \mathscr{L}'_{\text{int}}
$$

and obtain ${\mathscr L}_{\sf int}$ and verify that in the unitary gauge it gives the results quoted on page 119. PHYS506B, Spring 2005 1 and 2005 1

PHYS506B Assignment #2 given 08/02/2005 due08/03/2005

- **6**Consider the local U(1) transformation $\,\phi \rightarrow \phi' \!=\!\exp\bigl(-i\kappa \varepsilon\bigl(x\bigr)\bigr)\phi$
- ^{15pts} where ε(x) is a real function, and κ is a real constant. Defining the covariant derivative and its U(1) transformation with $\, D_{_\mu}^{} \equiv \! \partial_{_\mu}^{} + i q \kappa \! A_{_\mu}^{}$

$$
D_{\mu}\varphi \to D'_{\mu}\varphi' = \exp(-i\kappa \varepsilon(x))D_{\mu}\varphi
$$

$$
D'_{\mu} \equiv \partial_{\mu} + i q \kappa A'_{\mu}
$$

obtain the local transformation of the gauge field $A_{_\mu}$.

Let \mathscr{L} be a Lagrangian density that includes the complex scalar doublet ϕ with associated mass $m_{_{\mathrm{S}}}$ 1 $\phi = \begin{pmatrix} \phi_1 \ \phi_2 \end{pmatrix}$, the Dirac doublet ψ with associated mass $m_{\scriptscriptstyle \rm D}$ 1 2 $\Psi = \begin{pmatrix} \Psi^1 \\ \Psi^2 \end{pmatrix}$ **7**30pts

and that is invariant under Poincaré transformations and under local SU(2) gauge transformations.

Let ${\mathscr{L}}$ be of the form m $\mathscr{L} = \mathscr{L}_{\mathsf{D}} + \mathscr{L}_{\mathsf{S}} + \mathscr{L}_{\mathsf{A}} + \mathscr{L}_{\mathsf{D} + \mathsf{A}} + \mathscr{L}_{\mathsf{S} + \mathsf{A}}$

where the terms are, respectively, pure Dirac field, pure scalar field, pure gauge field, Dirac and gauge fields interaction, and scalar and gauge fields interaction.

a) Give an expression for $\mathscr X$ and for each of the 5 terms above.

- b) Give the gauge transformation law for each field.
- c) Note that there is no term \mathscr{L}_{S+D} . Are any of the following terms valid? Explain why.

c.1)
$$
\overline{\psi}\varphi_1\psi + \overline{\psi}\varphi_2\psi
$$

c.2) $\overline{\psi}\varphi\psi^1 + \overline{\psi}\varphi\psi^2$
c.3) $\overline{\psi}\varphi + \varphi^{\dagger}\psi$

PHYS506B, Spring 2005 2007 and Assignment #2

PHYS506B Assignment #2 given 08/02/2005 due08/03/2005

8Consider the pure SU(*ⁿ*) gauge field Lagrangian density

50pts

$$
\mathscr{L}_{A} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} \qquad F_{\mu\nu}^{a} = A_{\mu\nu}^{a} - gf^{abc} A_{\mu}^{b} A_{\nu}^{c} \qquad A_{\mu\nu}^{a} = \partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a}
$$

which is invariant under the SU(*ⁿ*) gauge transformation

$$
A_{\mu}^{a}T^{a} \xrightarrow{\varepsilon^{a}(x)} A_{\mu}^{'a}T^{a} = UA_{\mu}^{a}T^{a}U^{-1} + \frac{1}{g}\partial_{\mu}\varepsilon^{a}T^{a}
$$

\n
$$
F_{\mu\nu}^{a}T^{a} \xrightarrow{\varepsilon^{a}(x)} F_{\mu\nu}^{'a}T^{a} = UF_{\mu\nu}^{a}T^{a}U^{-1}
$$

\n
$$
U = \exp(-i\varepsilon^{a}(x)T^{a})
$$

\n
$$
[T^{a}, T^{b}] = i f^{abc}T^{c}
$$

a) Use the Euler-Lagrange equations to show that the equations of motion of the fields $A_\mu^{\;\;a}$ are given by $\rm 0$ $\partial_\mu F^{\mu\nu} - g f^{\,abc} A^b_\mu F^{c\mu\nu} =$

b) We have seen that the gauge current $j_{\sf A}^{\sf a \mu}$ can be obtained from $\qquad\partial_\mu F^{\alpha\mu\nu}\equiv j_A^{a\nu}\qquad \partial_\nu j_A^{a\nu}=0$ *a abc* ϕ *c abc* ϕ *c c* $j_A^{av} = gf^{abc} A^b_\mu F$ This yields $j_A^{av} = gf^{abc} A^b_\mu F^{c\mu\nu}$

Obtain this current, up to a multiplicative factor, by using Noether's theorem for the invariance of \mathscr{L}_A under the global SU(*n*) transformation

$$
A_{\mu}^{a}T^{a} \xrightarrow{\varepsilon^{a}} A_{\mu}^{'a}T^{a} = UA_{\mu}^{a}T^{a}U^{-1}
$$

$$
U = \exp(-i\varepsilon^{a}T^{a})
$$

$$
\left[T^{a}, T^{b}\right] = if^{abc}T^{c}
$$

where the ε^{a} are real constants.

Hint: first find $\delta A_\mu^{\,\,\mathrm{a}}$ for the infinitesimal ε^a and then apply Noether's theorem.

PHYS506B, Spring 2005 3

Question 1

a)
$$
Z = (0, e)^*(3^e) - m^2 2^{*}P
$$

\nbut $[5] = [dX][X] = W^{-1}[X] = W^{\circ}$
\nSo $[Z] = W^{\circ}$
\nSo $[Z] = W^{\circ}$
\nSo $[Z] = W^{\circ}$
\n $= 0$ $[P] = W$
\n $\Rightarrow [P] = W$
\n $\Rightarrow [P] = W^{\circ}$
\n $\Rightarrow W^{\circ}$
\n $\Rightarrow W^{\$

 \bar{z}

 \sim

Question 2 $x = (3\mu\phi)^{2}(3\mu\phi) - m^{2}\phi^{*}\phi$ = $g^{\alpha\mu} (\partial_{\mu} \phi)^{*} (\partial_{\alpha} \phi) - m^{2} \phi^{*} \phi$ The Euler-Lagrange equation for \$ is $\partial_{\gamma}\left(\frac{\partial x}{\partial(\partial_{\gamma}\phi)}\right)=\frac{\partial x}{\partial \phi}=\circ$ with the equation of $but \frac{\partial (3.7)}{\partial x} = g^{x} (3.7) * S_x = (0.7) *$ $\frac{\partial L}{\partial \varphi} = -m^2 \phi^*$ \int $\frac{1}{2}$ $\phi^* + m^2 \phi^* = 0$ $\Box \equiv \partial_{\mu} d^{\mu}$ $(\Box + m^2)$ $\phi^* = \circ$ The Euler-Lagrange equation for ϕ^* is $S_{\gamma}\left(\frac{1}{2(2^{\lambda}A_{\gamma})}-\frac{3A_{\gamma}}{2\lambda}-0\right)$ mation for squation of $\frac{\partial (y^2 + 2y^2)}{\partial (y^2 + 2y^2)} = 2x^2$ $\frac{\partial x}{\partial x^{*}} = -m^{2}x^{*}$ $\Box \phi + m^2 \phi = 0$ S_{∞} $(D+m^2)\phi = o$

Question 3 $\&\quad\mathcal{L}_{\mathcal{D}} = \overline{\psi} (\dot{\epsilon} \mathcal{Y}^{\mu})_{\mu} - m \psi$ = $\sum_{j=1}^{4} \sum_{k=1}^{4} \overline{\psi}_{j} [i (x^{i})_{ik}]_{jk} - m S_{ik} [4]_{k}$ The Eiler-Lagrange equation for $\overline{\psi_j}$ symbols The equation $\partial \gamma \left(\frac{\partial (\partial \gamma \overline{\psi})}{\partial x} \right) - \frac{\partial \overline{\psi}}{\partial y} = 0$ $l - 1, 2, 3, 4$ $but
\n $\frac{\partial \chi}{\partial(\partial v \psi_{\ell})}$ =$ $\frac{\partial \chi}{\partial \overline{\psi}} = \sum_{j=1}^{r} \sum_{\kappa=1}^{r} \frac{\partial}{\partial \overline{\psi}} \left\{ \overline{\psi}_{j} \left[i \left(\overline{\chi}^{\kappa} \right)_{j_{\kappa}} \right]_{\mu} - m \mathcal{S}_{j_{\kappa}} \right] \psi_{\kappa} \right\}$ $= \sum_{j=1}^{4} \sum_{k=1}^{4} \left\{ S_{ki} \left[i(V^m)_{ik} \partial_{\mu} - m S_{ik} \right] \psi_k \right\}$ $=$ $\sum_{k=1}^{N} [i (Y^{n})_{lk}]_{n} - m S_{lk} Y_{k}$ Transfere $\sum_{k=1}^{\infty} \int (x^k)^k dx dx = m \int_{\mathcal{R}} \Psi_k$ $= 6$ In Matrix notation, This reads $((i \gamma^{\mu})_{\mu} - m) \Psi$ = 0 $\ell = 1, 2, 3, 4$ on, more compactly $(i \gamma^{\mu})_{\mu} - m)\psi = 0$ which really is 4- equations.

$$
\frac{7a}{100} = \frac{e^{3x}-a}{x} = \frac{a}{x} =
$$

Question 4 $X = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - J^{\mu} A_{\mu}$ where $F^{\mu\nu} = J^{\mu\nu} - J^{\nu}A^{\mu}$ The Enter-Lagrange equation for A" yields The equation of mishon $\frac{d}{d\lambda} = \frac{d}{d\lambda} \left(\frac{d}{d\lambda} \frac{d}{d\lambda} \right) - \frac{d}{d\lambda} = 0$ $v = 0, 1, 2, 3$ $\frac{1}{2} \frac{d^{2}}{dx^{2}} = \frac{1}{4} \frac{1}{2} \frac{d^{2}}{dx^{4}} \left(F^{4/3}F_{4/3}^{2} \right)$ $\frac{1}{2} (B_{\gamma}B^{\gamma}) = \frac{1}{2} (g^{\alpha\gamma}B_{\gamma})$ $= 9^{\frac{10}{10}}\left(\frac{By}{ABx} + Ba\frac{JBy}{JAx}\right)$ = $B^{\gamma} \frac{\partial B_{\gamma}}{\partial A_{\mu}} + B^{\gamma} \frac{\partial B_{\gamma}}{\partial A_{\mu}}$ $=2B\frac{\partial G_V}{\partial A_M}$ Therefore $\frac{\partial}{\partial(\partial_{y_{1}}A_{y})}$ $\left(F^{\alpha/3}F_{\alpha/3} \right) = 2F^{\alpha/3} \frac{\partial F_{\alpha/3}}{\partial(\partial_{y_{1}}A_{y})}$ $\frac{1}{2\pi\hbar\omega} = \frac{1}{2(a_{\mu}A_{\nu})}\left[\frac{1}{2}a_{\mu}A_{\beta} - \frac{1}{2}a_{\mu}A_{\nu}\right]$ S_{α} $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\left(\frac{1}{2}x^{3} - \frac{1}{2}x^{2}\right)$ = $2F^{3/5}$ $\left[\frac{5}{4}x^{4} - \frac{1}{3}x^{2}\right]$ = $2[$ $F^{\mu\nu}$ - $F^{\nu\nu}$ = $4F^{uv}$

Thousand 22 rearlt. $\begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}$ Also $\frac{\partial Y}{\partial A_{\nu}} = -\frac{\partial}{\partial A_{\nu}} J^{\prime\prime}$ $\frac{1}{2}$ -1 A_{μ} Finally me obtain $- \frac{1}{2} \mu F^{\mu\nu} + \frac{1}{2} \nu$ $= 0$ $\frac{1}{2}$ $=$ $a, 1, 2, 3$ \overline{V}

Question 5

$$
x' = (P_{\mu} \varphi)^{*}(P_{\mu} \varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - V(\varphi)
$$
\n
$$
= F^{\mu\nu}(x) = 3^{\mu}A^{\nu} - 3^{\nu}A^{\mu}
$$
\n
$$
V(\varphi) = -\mu^{2} \varphi^{*} \varphi + \lambda (\varphi^{*} \varphi)^{2} \quad \lambda > 0
$$
\n
$$
D^{\mu} = 3^{\mu} + \frac{1}{6} A^{\mu}
$$
\n
$$
Wx f h \quad \mu^{2} > 0 \quad \text{we have} \quad \varphi(x) = \frac{1}{\sqrt{2}} \left[V + \sigma(x) + \frac{\lambda}{\lambda} R^{\mu} \right]
$$
\n
$$
S_{\alpha} = (3 \mu \varphi)^{2} (\lambda_{\mu} \varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - V(\varphi) + \frac{\lambda}{\lambda} R^{\mu}
$$
\n
$$
= -\frac{1}{3} \left[\varphi^{*} (3^{\mu} \varphi) - (3^{\mu} \varphi)^{*} \varphi \right] A_{\mu\nu} + \frac{1}{3} \left[\lambda_{\mu} R \right] \varphi^{*} \varphi
$$
\n
$$
= \frac{1}{2} \left(V + \sigma - \frac{\lambda}{\lambda} R \right) \left[\varphi^{*} \varphi \right]
$$
\n
$$
= \frac{1}{2} \left(V + \sigma - \frac{\lambda}{\lambda} R \right) \left[\varphi^{*} \varphi \right]
$$
\n
$$
= \frac{1}{2} \left(V^{2} + 2V \sigma + \sigma^{2} + R^{2} \right)
$$
\n
$$
\frac{1}{2} \left(V^{2} + 2V \sigma + \sigma^{2} + R^{2} \right)
$$
\n
$$
= \frac{1}{2} \left(V^{2} + 2V \sigma + \sigma^{2} + R^{2} \right)
$$
\n
$$
= \frac{1}{2} \left(V^{2} + 2V \sigma + \sigma^{2} + R^{2} \right)
$$
\n
$$
= \frac{1}{2} \left(V^{2} + 2V \sigma + \sigma^{2} + R^{2} \right)
$$
\n<math display="</math>

 $\begin{array}{ccccc} \xi & \eta & \eta & \eta & \eta \\ \eta & \eta & \eta & \eta & \eta \\ \eta & \eta & \eta & \eta & \eta \\ \end{array}$

ءک $x - x_{int} = \frac{1}{2} (3\mu\partial(3^m\sigma) + \frac{1}{2} (3\mu\nu)(3^m\sigma) - \frac{1}{4}F^{m}F_{\mu\nu}$ $+ \frac{M^2V^2}{V} - \mu^2\sigma^2 - \lambda V \sigma (\sigma^2 + n^2) - \frac{\lambda}{V} (\sigma^2 + n^2)^2$ where $X_{iNT} = -c \cdot \frac{1}{6} \cdot \frac{1}{2} (V + \sigma - c \kappa) (\partial_M \sigma + c \partial_M \eta)$ $\frac{1}{2} (V + \sigma + c \kappa) (\partial_{\mu} \sigma - c \partial_{\mu} \kappa)$ A^{μ} $+$ $\frac{1}{2}$ 3^2 A^M A_M $(v^2 + 2v\sigma + \sigma^2 + n^2)$ $(V+\sigma - i\eta)(\partial_{\mu}\sigma + i\partial_{\mu}\eta) - (V+\sigma + i\eta)(\partial_{\mu}\sigma - i\partial_{\mu}\eta)$ But = $2i\mp_{m} \left[(V+\sigma - i\eta)(J_{M}\sigma + iJ_{M}R) \right]$ = 20 $[V\partial_M R + \sigma \partial_M R - R \partial_M \sigma]$ $Z_{irr} = 8 \int v d\mu \nu + \sigma d\mu \nu - n d\mu \sigma A$ $+$ $\frac{1}{2}$ 8^2 AⁿA_n $(v^2 + 2v\sigma + \sigma^2 + v^2)$ So finally $\frac{2}{2}$ $\frac{1}{2}$ = μ^2 $x = 1 (3^{n}Q)(3^{n}Q) - n^{3}Q^{2}$ $\frac{1}{\sqrt{2}}$ m_n = 0 $+$ \neq $(\frac{3}{2}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{2}$ $-1F$ ^{wy} F_{∞} $\rightarrow M_A = gV$ $+$ $\frac{1}{2}$ 8^2 V^2 A^M A_μ guadratic compled $+$ 3v ∂_μ n A^m $+ \alpha_{irr}$ where $x_{\text{int}} = -\lambda v \sigma (G^{2} + n^{2}) + g \sigma (\lambda x) A^{M} - g n (\lambda x) A^{M}$ $+$ $g^{2}V\sigma$ AuA^M $-\frac{\lambda}{4}$ $(\sigma^2+\kappa^2)^2$ + $\frac{1}{2}$ of A^4 $(\sigma^2+\kappa^2)$

In The unitary sange,
 $\phi(x) = \frac{1}{\sqrt{2}} (v + \sigma(x))$ $\frac{1}{\sqrt{2}}$ is the set of second as ~ 1.12 $x = \frac{1}{2} (\partial_{\mu}\sigma)(\partial^{\mu}\sigma) - \mu^{2}\sigma^{2}$
- $\frac{1}{4} F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}g^{2}\nu^{2}A_{\mu}A^{\mu}$ $+$ LiNT $x_{irr} = -\lambda v \sigma^3 + g^2 v \sigma A_m A^m - \frac{\lambda}{\gamma} \sigma^{\gamma} + \frac{1}{2} g^2 A_m A^m \sigma^2$
= $-\lambda v \sigma^3 - \frac{\lambda}{\gamma} \sigma^{\gamma} + \frac{1}{2} g^2 A^m A_m (2v \sigma + \sigma^2)$ \mathcal{R}^{\prime} and \mathcal{R}^{\prime} and \mathcal{R}^{\prime} and \mathcal{R}^{\prime} The career a more one Allegence weeks by dia modella $\arg\log\frac{1}{2}$, $\arg\log\frac{1}{2}$, $\frac{1}{2}$ معاملاتها والمست ಆ ಇಂದು " $x = 2$ $x = 3$ te e-f-manging en died es la d $\begin{array}{c} \mathbb{R}^n \times \mathbb$ $\mathbb{Z}[\mathbb{Z}_p]$ denotes that \mathbb{Z} μ , μ and μ , μ es a xia sub lagos in $\label{eq:1} \begin{array}{ll} \alpha_{\alpha}(\mathbf{x},\mathbf{y},\mathbf{y}) = \frac{1}{2} \left(\mathbf{x},\mathbf{y},\mathbf{y},\mathbf{y} \right) = \left(\mathbf{x},\mathbf{y},\mathbf{y},\mathbf{y} \right) \end{array}$ dele la cit di si ne d 数据目录 Roma de en n háis S

Question 6 $D'_{\mu} \varphi' = (D_{\mu} + i g \kappa A_{\mu}) e^{-i \epsilon(\kappa)K} \varphi$ $-ikQ_{k}g$ $e^{-ikQ_{k}g} + e^{-ikQ_{k}}(J_{m} + igkA_{m})\phi$ $\overline{}$ = $-i\kappa Qz) e^{-ikx} \varphi + e^{-ikx} (d\mu + ig \kappa A_{\mu}) \varphi$ $+e^{-i\epsilon k}$ CEKAMP (igkAn ϵ _K $+igu e^{-ikx}(A_{\mu}-A_{\mu})$ $= \frac{1}{2}(9x)$ $e^{-i\epsilon k}$ $P_M \not\subset$ = $A_{m} + \frac{1}{2}A_{m}g(x)$ 54 A_{μ}

Question 7 We have $\varphi = (\begin{matrix} \varphi_i \\ \varphi_{\perp} \end{matrix})$ and $\varphi = (\begin{matrix} \varphi_i \\ \varphi_{\perp} \end{matrix})$ a) The suitable Lagrangian density in $L = (D_{\mu}\phi)^{T}(D^{\mu}\phi) - m_{s}\phi^{+}\phi$ $+\overline{\psi}$ (is $D_{\mu} - m_{\overline{\mu}}$) 4 $=$ $\frac{1}{4}$ $\overline{F}_{\mu\nu}^{\alpha}$ $\overline{F}^{\alpha\mu\nu}$ $P_{\mu} = \frac{1}{2} \mu - igT^{\alpha} A_{\mu}^{\alpha}$ ashere $F_{\mu\nu} = A_{\mu\nu} + g \int^{abc} A_{\mu} A_{\nu}$ $A_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ $T^a = \frac{\sigma^a}{2}$ $\left[\frac{\sigma^a}{2}, \frac{\sigma^b}{2}\right] = \frac{\sigma^c}{2}e^{abc}$ $1^{abc} = \epsilon^{abc}$ $\left[\frac{\sigma^{a}}{2}, \frac{\sigma^{b}}{2}\right] = \frac{1}{2} \delta^{ab}$ From The notes we easily obtain $x = x_{D} + x_{S} + x_{A} + x_{D+A} + x_{S+A}$ $x_{2} = \overline{\psi} [i\gamma^{\mu} j_{\mu} - m_{2}] \psi$ $x_{s} = (3\mu\phi)^{+}(3\mu\phi) - m_{s}^{2}\phi^{+}\phi$ $J_A = -\frac{1}{4} F_{\mu\nu}^{\circ} F^{a\mu\nu}$ $Z_{D+A} = g \overline{\psi} \gamma^m T^m \psi A_m^m$ $x_{s+n} = ig [x^T T^a (x^n x) - (x^n x^T T^a T^a)] A_n^a$ $+ 19^{2} A^{0} A^{5} Q^{+} [T^{9} T^{6}] P$

The last term can also be uniton $\frac{1}{4}$ 3² An Aⁿ $4^{+}\phi$ b) The local su(2) gauge transformations are $\varphi \rightarrow \varphi' = \psi \varphi$
 $\psi \rightarrow \psi' = \psi \psi$ $A_{\mu}^{a} \sigma^{a}$ - $B_{\mu}^{a} \sigma^{a} = A_{\mu}^{a} U \sigma^{a} U^{-1} - \frac{1}{9} \sigma^{a} \lambda_{\mu} \epsilon^{a}$ $\frac{1}{u} \int \frac{1}{u^2} \, du = \frac{1}{2} \int \frac{1}{u^2} \, du = \frac{1}{2} \int \frac{1}{u^2} \, du$ This leads to $F_{\mu\nu}^{\alpha}\sigma^{\alpha}$ = $F_{\mu\nu}^{'\alpha}\sigma^{\alpha}$ = $F_{\mu\nu}^{\alpha}$ $U\sigma^{\alpha}U^{-1}$ $\epsilon) \overline{\psi} \phi_1 \psi + \overline{\psi} \phi_2 \psi$ is not invariant under local SU(2). $\overline{\psi}\phi\psi' + \overline{\psi}\phi\psi^2$ is not in romant under local sure) $\overline{\varphi}\varphi + \varphi^{\dagger}\psi$ is not a Larentz scalar. Therefore neare of The 3 Terms are valid for This Theory. ∦ jestkanjas

r ter farbed

医鼻 医骨间的

Question 8

 $\frac{d_{A}}{d\mu} = \frac{1}{F_{xx}} F_{yy}^{\alpha} F_{yy}^{\alpha} = \frac{1}{F_{yy}} F_{yy}^{\alpha} = \$ Consider Me equations of motion of the sange field Au are given by $\n $\mathcal{D}_{\varphi}$$ $\frac{1}{2} \int \frac{1}{\sqrt{2\pi}} \int \$ $\frac{8\pi}{d} \frac{d^{2}y}{d^{2}y} = \frac{1}{d} \frac{d^{2}y}{d^{2}y} - \frac{1}{4} \frac{1}{d^{2}y^{2}}$ $-\frac{1}{4}\left[\begin{array}{c} 3F_{\alpha\beta}^{b} & F_{\alpha\beta}^{b\alpha\beta} \\ 3G_{\mu}A_{\nu}^{\alpha}\end{array}\right]F_{\alpha\beta}^{b\alpha\beta} + F_{\alpha\beta}^{b}\frac{3F_{\alpha\beta}^{b\alpha\beta}}{3G_{\mu}A_{\nu}^{\alpha}}$ $= -\frac{1}{2} \frac{\partial F_{\alpha\alpha}}{\partial (\partial_{\mu} A_{\nu}^{\alpha})} F^{\alpha\alpha\beta}$ and DE^{b}_{A} $=\frac{\partial A_{\alpha\beta}^{b}}{\partial(\partial_{\mu}A_{\nu}^{\circ})}=\frac{\partial}{\partial(\partial_{\mu}A_{\nu}^{\circ})}\left[\frac{\partial_{\alpha}A_{\beta}^{b}}{\partial A_{\beta}^{a}}-\frac{\partial_{\beta}A_{\alpha}^{b}}{\partial A_{\alpha}^{b}}\right]$ $= [5x^2\delta y - 5x^2\delta x]$ δ_{ab} S_{G} $J(D.A)^{2}$ $=$ $-\frac{1}{2}$ $\frac{2\mu v}{\sqrt{2}}$ $\left| \frac{1}{2} \right|$ \Rightarrow Also $-\frac{1}{2}\frac{\partial F_{\alpha\alpha}}{\partial A\alpha}F^{b\alpha\alpha}$ $\frac{\partial L}{\partial \mathbf{X}^{\alpha}}$

 BM $=$ $-2\int_{brs}^{brs} \frac{\partial}{\partial A_{\gamma}^{s}} (A_{\alpha}^{r} A_{\beta}^{s})$
 $=$ $-2\int_{brs}^{brs} \frac{\partial}{\partial A_{\gamma}^{s}} (A_{\alpha}^{r} A_{\beta}^{s}) + A_{\alpha}^{r} S_{\beta}^{r} G_{\alpha s}$ = = $2 \int_{0}^{\infty} \frac{x^{2}}{x^{3}} dx = \int_{0}^{\infty} 4x^{2} \left[\frac{y^{2}}{x^{2}} + \frac{y^{3}}{x^{4}} + \frac{y^{2}}{x^{3}} + \frac{y^{4}}{x^{2}} + \frac{y^{5}}{x^{4}} \right]$ $S_{\mathbf{Q}}$ $\frac{9}{2}$ $rac{2}{2}$ $rac{1}{4}$ $\int_{0}^{abc} \left[A_{\alpha}^{c} F^{b\alpha\nu} - A_{\beta}^{c} F^{b\nu\beta} \right]$ = + $2 \int^{abc} A_{\mu}^{c} F_{\mu\nu}^{\mu\nu} = -2 \int^{abc} A_{\mu}^{b} F^{c}$ Margare $- \partial_{\mu} F^{\alpha \mu \nu} + g f^{\alpha b c} A^{\mu} F^{c \mu \nu}$ O

The Lagrangerin density $Z_{\uparrow} = -\frac{1}{4} F_{\downarrow}^{\circ} F^{\circ}{}^{\mu\nu}$ is also invariant under a glubal suiv) transformation $A^{\alpha}_{\mu}T^{\alpha}$ = ϵ = $A^{\prime\alpha}_{\mu}T^{\alpha}$ = $UA^{\alpha}_{\mu}T^{\alpha}U^{-1}$ $U = \exp(-i \epsilon^{\alpha} T^{\alpha})$, ϵ^{α} real constants The corresponding infinitesimal Transformation is obtained from $U = 1 - i \epsilon^n T^{\alpha} + O(\epsilon^2)$ $A_{\mu}^{(a}T^{a} = A_{\mu}^{a} (1-i \epsilon^{b}T^{b})T^{a} (1+i \epsilon^{c}T^{c}) + O(\epsilon^{2})$ = A^a_μ $\left[T^a - \xi \left(\epsilon^b T^b T^a + \epsilon^c T^a T^c \right) \right] + O(\epsilon^2)$ = $A^{\alpha}_{\mu}T^{\alpha} - i\left[\epsilon^{\alpha}T^{\beta}, A^{\alpha}_{\mu}T^{\alpha}\right]$ $\mathcal{E}(A_{\mu}^{a}T^{c}) = -c \left[\epsilon^{b}T^{b}, A_{\mu}^{c}T^{c} \right] = -c \epsilon^{b}A_{\mu}^{c} \left[T^{b}T^{c} \right]$ $= 5^b A^c_\mu /^{bc}$ $\delta A_{\mu}^{\alpha} = 1^{\alpha bc} \epsilon^b A_{\mu}^c$ Nocher's Theorem yields ∂_{μ} μ^{μ} = 0 $f^{\mu} = \frac{\partial X_A}{\partial (\partial_{\mu} A_{\nu}^{\alpha})} S A_{\nu}^{\alpha}$ (note The sum area v and a) $=$ \pm F^{ayy} \int abc \int A_y \int $=$ \int \int \int A_y \int \int F^{ayy} $= -\frac{1}{2}abc$ A_v^b ε^c $F^{a\gamma m}$

Hence $D_{\gamma}f^{\gamma}$ $-\int_{0}^{\alpha\beta c}\frac{1}{\lambda}e^{c}$ \int_0^1 $= 0$ μ τ $= + \frac{1}{9} \int_{A} \epsilon v \, dv$ δ^{ν} Lot $\left| \mathcal{E} \right|_c$ llon onkitnary, we set sing Me are $1<$ \int_{0}^{∞} de \int_{0}^{∞} de F° -9 $\frac{1}{2}$ $A^b = A^b$ $F^{\alpha \mu \nu}$ $J_A^{\alpha\gamma}$ $\overline{9}$ $\left| \cdot \right|$ $\sigma\upsilon$ $J_{A}^{\alpha\gamma}$ with \circ $\overline{}$