PHYS506B Assignment #2 SOLUTIONS

given 08/02/2005 due 08/03/2005

1 Since the action is dimensionless, $[S] = M^0$,

^{15pts} a) Find the dimension of the Klein-Gordon field. That is, $[\phi] = M^n$, find *n*.

- b) Find the dimension of the Dirac field. That is, $[\psi] = M^n$, find *n*.
- c) Find the dimension of the Maxwell field. That is, $[A^{\mu}] = M^{n}$, find *n*.

2 From the Lagrangian density $\mathscr{L}_{KG} = (\partial_{\mu} \phi)^* (\partial^{\mu} \phi) - m^2 \phi^* \phi$ ^{10pts} obtain the Klein-Gordon equation $(\Box + m^2)\phi = 0$ and $(\Box + m^2)\phi^* = 0$

3 From the Lagrangian density
$$\mathscr{L}_{\mathsf{D}} = \overline{\psi} \Big[i \gamma^{\mu} \partial_{\mu} - m \Big] \psi$$

^{20pts} obtain the Dirac equation $\Big(i \gamma^{\mu} \partial_{\mu} - m \Big) \psi = 0$ and $i \partial_{\mu} \overline{\psi} \gamma^{\mu} + m \overline{\psi} = 0$

4 From the Lagrangian density $\mathscr{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - j^{\mu}A_{\mu}$ ^{20pts} obtain Maxwell's equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$

5 From the information given in the notes, obtain the result quoted on page 117 of the notes, U(1) 40pts Gauge Invariance, Higgs Model,

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \sigma \right) \left(\partial^{\mu} \sigma \right) - \mu^{2} \sigma^{2} + \frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \left(q \mathsf{V} \right)^{2} A^{\mu} A_{\mu} + q \mathsf{V} \left(\partial_{\mu} \eta \right) A^{\mu} + \mathscr{L}_{\text{int}}^{\prime}$$

and obtain \mathscr{D}_{int} and verify that in the unitary gauge it gives the results quoted on page 119. PHYS506B, Spring 2005 Assignment #2

PHYS506B Assignment #2

given 08/02/2005 due 08/03/2005

6 Consider the local U(1) transformation $\phi \rightarrow \phi' = \exp(-i\kappa\varepsilon(x))\phi$

^{15pts} where $\varepsilon(x)$ is a real function, and κ is a real constant. Defining the covariant derivative and its U(1) transformation with $D_{\mu} \equiv \partial_{\mu} + iq\kappa A_{\mu}$

$$D_{\mu}\phi \to D'_{\mu}\phi' = \exp(-i\kappa\varepsilon(x))D_{\mu}\phi$$
$$D'_{\mu} \equiv \partial_{\mu} + iq\kappa A'_{\mu}$$

obtain the local transformation of the gauge field A_{μ} .

7 Let \mathscr{D} be a Lagrangian density that includes the complex scalar doublet φ with associated mass $m_{\rm S}$ ^{30pts} $\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$, the Dirac doublet ψ with associated mass $m_{\rm D} = \psi = \begin{pmatrix} \psi^1 \\ \psi^2 \end{pmatrix}$

and that is invariant under Poincaré transformations and under local SU(2) gauge transformations.

Let \mathscr{L} be of the form $\mathscr{L} = \mathscr{L}_{\mathsf{D}} + \mathscr{L}_{\mathsf{S}} + \mathscr{L}_{\mathsf{A}} + \mathscr{L}_{\mathsf{D}+\mathsf{A}} + \mathscr{L}_{\mathsf{S}+\mathsf{A}}$

where the terms are, respectively, pure Dirac field, pure scalar field, pure gauge field, Dirac and gauge fields interaction, and scalar and gauge fields interaction.

a) Give an expression for \mathscr{D} and for each of the 5 terms above.

- b) Give the gauge transformation law for each field.
- c) Note that there is no term \mathscr{D}_{S+D} . Are any of the following terms valid? Explain why.

c.1)
$$\overline{\psi}\phi_1\psi + \overline{\psi}\phi_2\psi$$

c.2) $\overline{\psi}\phi\psi^1 + \overline{\psi}\phi\psi^2$
c.3) $\overline{\psi}\phi + \phi^{\dagger}\psi$

PHYS506B, Spring 2005

Assignment #2

PHYS506B Assignment #2

given 08/02/2005 due 08/03/2005

8 Consider the pure SU(*n*) gauge field Lagrangian density

50pts

$$\mathscr{L}_{\mathsf{A}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} \qquad F^a_{\mu\nu} = A^a_{\mu\nu} - g f^{abc} A^b_{\mu} A^c_{\nu} \qquad A^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu}$$

which is invariant under the SU(n) gauge transformation

$$\begin{array}{l} A^{a}_{\mu}T^{a} \xrightarrow{\epsilon^{a}(x)} A^{\prime a}_{\mu}T^{a} = UA^{a}_{\mu}T^{a}U^{-1} + \frac{1}{g}\partial_{\mu}\epsilon^{a}T^{a} \\ F^{a}_{\mu\nu}T^{a} \xrightarrow{\epsilon^{a}(x)} F^{\prime a}_{\mu\nu}T^{a} = UF^{a}_{\mu\nu}T^{a}U^{-1} \\ U = \exp\left(-i\epsilon^{a}(x)T^{a}\right) \\ \left[T^{a}, T^{b}\right] = if^{abc}T^{c} \end{array}$$

a) Use the Euler-Lagrange equations to show that the equations of motion of the fields A_{μ}^{a} are given by $\partial_{\mu}F^{a\mu\nu} - gf^{abc}A_{\mu}^{b}F^{c\mu\nu} = 0$

b) We have seen that the gauge current $j_A^{a\mu}$ can be obtained from $\partial_{\mu}F^{a\mu\nu} \equiv j_A^{a\nu}$ $\partial_{\nu}j_A^{a\nu} = 0$ This yields $j_A^{a\nu} = gf^{abc}A^b_{\mu}F^{c\mu\nu}$

Obtain this current, up to a multiplicative factor, by using Noether's theorem for the invariance of \mathscr{D}_A under the global SU(*n*) transformation

$$A^{a}_{\mu}T^{a} \xrightarrow{\epsilon^{a}} A'^{a}_{\mu}T^{a} = UA^{a}_{\mu}T^{a}U^{-1}$$
$$U = \exp\left(-i\epsilon^{a}T^{a}\right)$$
$$\left[T^{a}, T^{b}\right] = if^{abc}T^{c}$$

where the $\epsilon^{\rm a}$ are real constants.

Hint: first find δA_{μ}^{a} for the infinitesimal ϵ^{a} and then apply Noether's theorem.

PHYS506B, Spring 2005

Assignment #2

Question 1

a)
$$\mathcal{X} = (\partial_{n} \varphi)^{*} (\partial^{m} \varphi) - m^{2} \varphi^{*} \varphi$$

but $[S] = [dK][X] = M^{-Y}[X] = M^{\circ}$
So $[X] = M^{Y}$
So have $[X] = [m]^{2}[\varphi]^{2} = M^{*}[\varphi]^{2} = M^{Y}$
 $\implies [\varphi] = M' \implies n = 1$
b) $\mathcal{X} = \overline{\psi} [i \mathcal{S}^{M} \partial_{\mu} - m]^{4} \mathcal{Y}$
 $[\mathcal{X}] = [m][\mathcal{Y}]^{2} = M [\mathcal{Y}]^{2} = M^{Y}$
 $\implies [\mathcal{Y}] = M^{3/2} \implies n = 2/2$
c) $\mathcal{X} = -\frac{1}{4} F^{MV} F_{MV} = -\frac{1}{4} (\partial^{m} A^{V} - \partial^{V} A^{m}) (\partial_{\mu} A_{V} - \partial_{v} A_{\mu})$
 $[X] = ([X^{-1}][A])^{2} = M^{2}[A]^{2} = M^{Y}$
 $\implies [A] = M \implies N = 1$

Question 2 $\mathcal{Z} = (\partial_{\mu} \phi)^{*} (\partial^{\mu} \phi) - m^{2} \phi^{*} \phi$ = $g^{\alpha\mu} (\partial_{\mu} \phi)^* (\partial_{\alpha} \phi) - m^2 \phi^* \phi$ The Euler-Lagrange equation for \$ is $\partial_{\gamma}\left(\frac{\partial \chi}{\partial(\partial_{\gamma} \phi)}\right) - \frac{\partial \chi}{\partial \phi} = 0$ yields The equation of motion for ϕ^{*} but $\frac{\partial \mathcal{X}}{\partial (\partial_{y} \phi)} = g^{\alpha} (\partial_{\mu} \phi)^{*} S^{\nu}_{\lambda} = (\partial^{\nu} \phi)^{*}$ $\frac{\partial d}{\partial \varphi} = -m^2 \phi^*$ So $\Box \phi^* + m^2 \phi^* = 0$ II = Jud $(\Box + m^2) p^* = 0$ The Euler-Lagrange equation for \$ * is $3^{\Lambda}\left(\frac{9(3^{\Lambda}\otimes \star)}{9\chi}\right) - \frac{9\otimes \star}{9\chi} = 0$ yields The equation of motion for \$. but $\frac{\partial z}{\partial (\partial_y \phi^*)} = \partial^y \phi$ $\frac{\partial \chi}{\partial 0^*} = -m^2 \phi$ $\Box \phi + m^2 \phi = 0$ So $\left(\Box + m^2\right)\phi = 0$

Question 3 $\mathcal{L}_{\mathcal{D}} = \overline{\Psi} (i \mathcal{Y}^{m})_{\mu} - m) \Psi$ $= \sum_{j=1}^{\infty} \overline{\Psi_{j}} \left[i \left(\mathcal{Y}_{j_{k}}^{\mathcal{M}} \right)_{j_{k}} - m S_{j_{k}} \right] \Psi_{k}$ The Erler-dagrange equation for F; yields The equation of motion for Y: $\partial_{\gamma}\left(\frac{\partial(\partial_{\gamma}\overline{\psi})}{\partial\chi}-\frac{\partial\overline{\psi}}{\partial\chi}=$ 1 - 1, 2, 3,4 0 but $\frac{\partial \mathcal{L}}{\partial(\partial_v \Psi_e)} = 0$ $\frac{\partial \chi}{\partial \Psi_{p}} = \sum_{j=1}^{\gamma} \sum_{k=1}^{\gamma} \frac{\partial \Psi_{p}}{\partial \Psi_{p}} \left\{ \overline{\Psi_{j}} \left[i \left(\mathcal{Y}^{\mu} \right)_{jk} \partial_{\mu} - m S_{jk} \right] \Psi_{k} \right\}$ $= \sum_{i=1}^{4} \sum_{k=1}^{4} \left\{ S_{ki} \left[i \left(Y^{m} \right)_{ik} \partial_{\mu} - m S_{ik} \right] Y_{k} \right\}$ = $\sum_{K=1}^{7} \left[i \left(Y^{M} \right)_{\ell K} \partial_{\mu} - m S_{\ell K} \right] Y_{K}$ Thorefore Z ((()) ek Ju - m Seu / Lu = 0 In Matrix notation, This reads $\left[\left(i\,\mathcal{Y}^{\mu}\right)_{\mu}-m\right)\Psi\right]=0$ l = 1, 2, 3, 4. on, more compartly (i y m Ju - m) 4 = 0 which really is 4- equations.

The Enter - degrange equation for
$$4j$$
 syndido The equation of
matter for ψ :
 $\partial_{v} \left(\frac{\partial \chi}{\partial (\partial_{v} \psi_{R})} \right) = \frac{\partial \chi}{\partial \psi_{R}} = 0$ $l = 1, 2, 3, Y$
but $\frac{\partial \chi}{\partial (\partial_{v} \psi_{R})} = \frac{\partial}{\partial (\partial_{v} \psi_{R})} \sum_{j=i}^{d} \sum_{k=1}^{d} \overline{\psi_{j}} \left[i (Y^{M})_{ik} \partial_{jk} - m S_{ik} \right] \psi_{k}$
 $= \sum_{j=i}^{d} \overline{\psi_{j}} i (Y^{V})_{ik} S_{jk}^{M} S_{kk}$
 $= \sum_{j=i}^{d} \overline{\psi_{j}} i (Y^{V})_{ik} S_{jk}^{M} S_{kk}$
 $= -m \sum_{j=i}^{d} \overline{\psi_{j}} S_{ik} S_{kk}$
 $= -m \overline{\psi_{k}} = \overline{\psi_{j}} \overline{\psi_{k}} = \overline{\psi_{k}} = \overline{\psi_{k}} = 0$
 $\sum_{j=i}^{k} \left[i \partial_{v} \overline{\psi_{j}} (Y^{N})_{jk} + m \overline{\psi_{k}} = 0$
 $\sum_{j=i}^{k} \left[i \partial_{v} \overline{\psi_{j}} (Y^{N})_{jk} + m \overline{\psi_{k}} = 0$
 $\sum_{j=i}^{k} \left[i \partial_{v} \overline{\psi_{j}} Y^{V} + m \overline{\psi_{k}} = 0$

Question 4 2 = - LEF Fur - JAA where FMV = JAV - JAM The Enter - Lagrange equation for A" yields The equation of motion $\partial_{\mu} \left(\frac{\partial \chi}{\partial (\partial_{\mu} A_{\nu})} \right) - \frac{\partial \chi}{\partial A_{\nu}} = 0$ V= 0,1,2,3 but $\frac{\partial Z}{\partial (\partial_m A_v)} = -\frac{1}{7} \frac{\partial}{\partial (\partial_m A_v)} \left(F^{ays} F_{ays} \right)$ $\frac{\partial}{\partial A_{\mu}} \left(B_{\nu} B^{\nu} \right) = \frac{\partial}{\partial A_{\mu}} \left(g^{\nu} B_{\nu} B_{\nu} \right)$ Consider = gav (By JBz + Ba JBy JAm + Ba JAm) $= B^{\gamma} \frac{\partial B_{\gamma}}{\partial A_{\mu}} + B^{\gamma} \frac{\partial B_{\gamma}}{\partial A_{\mu}}$ = 2B JBY JAM Therefore <u>J</u> (F^{\$\frac{1}{2}}F_{\$\frac{1}{2}}) = 2F^{\$\frac{1}{2}}F_{\$\frac{1 but 2 Fax = 2 2(2, Av) 2(2, Av) [22 Az - 23 Az = 52 53 - 52 54 $S_{a} = \frac{1}{2(D_{a}A_{v})} \left(F^{a}S_{a}F_{a}S \right) = 2F^{a}S_{a} \left[S_{a}^{a}S_{\beta}^{v} - S_{\beta}^{a}S_{a}^{v} \right]$ = 2 [F" - F " = 4 F 42

Thosphere 22 2 (2) Avi esult. Also $\frac{\partial \chi}{\partial A_{y}} = -\frac{\partial}{\partial A_{y}} \int_{M}^{M}$ - גע -Am Finally me obtain $-\partial_{\mu}F^{\mu\nu}+J$ $\partial_{\mu}F^{\mu\nu}=J$ = 0 on 0, 1, 2, 3 V

Question 5

$$\begin{split} \lambda &= \left(\mathbb{D}_{\mu} \varphi \right)^{*} \left(\mathbb{D}^{\mu} \varphi \right) - \frac{1}{Y} \mathbb{F}_{\mu\nu}^{\mu\nu} \mathbb{F}_{\mu\nu} - \mathcal{V}(\beta) \\ \text{where} \qquad \mathbb{F}^{\mu\nu}(x) = \Im^{\mu} A^{\nu} - \Im^{\nu} A^{\mu} \\ \mathcal{V}(\varphi) &= -\mu^{2} \varphi^{\mu} \varphi^{\mu} + \Im \left(\varphi^{\mu} \varphi \right)^{2} \quad \Im > \circ \\ \mathbb{D}^{m} &= \Im^{m} + i \cdot \frac{1}{Q} A^{m} \\ \frac{1}{W^{2}} \left(\mathbb{D}^{\mu} \varphi \right)^{\mu} \left(\mathbb{D}_{\mu} \varphi \right) - \frac{1}{Q} \mathbb{F}^{\mu\nu} \mathbb{F}_{\mu\nu} - \mathcal{V}(\varphi) + \mathcal{X}_{\mu\nu} \\ \text{where} \qquad \mathcal{X}_{\mu\nu}^{i} = -i \cdot \frac{1}{2} \left[\varphi^{\mu} \left(\Im^{\mu} \varphi \right) - \left(\Im^{\mu} \varphi \right)^{\mu} \varphi^{\mu} \right] A_{\mu} + \frac{1}{2} A^{\mu} A_{\mu} \varphi^{\mu} \varphi^{\mu} \\ \text{New}, \qquad \left(\Im^{\mu} \varphi \right)^{\mu} \left(\mathbb{D}_{\mu} \varphi \right) = \frac{1}{2} \left(\Im_{\mu} \sigma \right) \left(\Im^{\mu} \sigma \right) + \frac{1}{2} \left(\Im_{\mu} \kappa \right) \left(\Im^{\mu} \kappa \right) \\ \varphi^{\mu} \varphi^{\mu} &= \frac{1}{2} \left(\nu + \sigma - i \cdot n \right) \left(\nu + \sigma + i \cdot n \right) \\ &= \frac{1}{2} \left(\nu^{2} + 2 \nu \sigma + \sigma^{2} + \kappa^{2} \right) \\ \left(\varphi^{\mu} \varphi^{\mu} \right)^{\mu} &= \frac{1}{2} \left[\nu^{\mu} + 4 \nu^{2} \sigma^{2} + \left(\sigma^{2} + \kappa^{2} \right)^{2} + 4 \nu^{2} \sigma^{2} + 2 \nu^{2} \left(\sigma^{2} + \kappa^{2} \right) \right] \\ + 4 \nu \sigma \left(\sigma^{2} + \kappa^{2} \right) \\ \end{pmatrix}$$
but recall $\nu^{2} &= \frac{m^{2}}{\lambda}. \end{aligned}$

$$\begin{split} \mathbb{W}_{2} \text{ con gaThen The powers of The $\sigma_{j,k} \left[\mu \mathrm{Ido} \sin \omega' - \omega'_{j,kT} \right] \\ \oplus m^{2} \frac{1}{2} \left(\sigma^{2} + \kappa^{2} \right) - \Im \left(\nu^{2} \sigma^{2} + \frac{1}{2} \nu^{2} \left(\sigma^{2} + \eta^{2} \right) \right) \\ &= \left(\sigma^{2} + \kappa^{2} \right) - \Im \left(\nu^{2} \sigma^{2} + \frac{1}{2} \nu^{2} \left(\sigma^{2} + \eta^{2} \right) \right) \\ = \left(\sigma^{2} + \kappa^{2} \right) - \Im \left(\nu^{2} \sigma^{2} + \frac{1}{2} \nu^{2} \left(\sigma^{2} + \eta^{2} \right) \right) \\ = - \frac{1}{2} \left(\sigma^{2} + \kappa^{2} \right)^{2} \end{split}$$$

So $\mathcal{L} - \mathcal{L}_{iNT} = \frac{1}{2} (\partial_{\mu} \sigma) (\partial^{\mu} \sigma) + \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} k) - \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) (\partial$	$\frac{1}{2} \left(\sigma^2 + n^2 \right)^2$
where $Z_{iNT} = -ig \left[\frac{1}{2} (V + \sigma - in) (\partial_{\mu} \sigma + i \partial_{\mu} n) - L (V + \sigma + in) (\partial_{\mu} \sigma - in) \right]$	-(2, k)] A ^m
$+ \frac{1}{2}g^{2}A^{M}A_{\mu}\left(v^{2}+2v\sigma+\sigma^{2}+n^{2}\right)$ But $(v+\sigma-in)(\partial_{\mu}\sigma+i\partial_{\mu}n) - (v+\sigma+in)(\partial_{\mu}\sigma)$ $= 2i \sum \left[(v+\sigma-in)(\partial_{\mu}\sigma+i\partial_{\mu}n)\right]$	no-idnn)
$= 2i \left[V \partial_{\mu} n + \sigma \partial_{\mu} n - n \partial_{\mu} \sigma \right]$ So $Z_{iNT} = g \left[V \partial_{\mu} n + \sigma \partial_{\mu} n - n \partial_{\mu} \sigma \right] A^{m}$	σ ² ± μ ²]]
So finally $(1 + 2)(2m_{c}) = m^{2} - 2$	2 M ² 2
$+ \frac{1}{2} (\partial_{m} n) = -\frac{1}{2} F^{my} F_{my}$ $+ \frac{1}{2} q^{2} \gamma^{2} A^{m} A = -\frac{1}{2} P^{my} F_{my}$	$M_{R} = 0$ $M_{A} = 0$
+ gv dyn A ^m + diwr whore i 2 (-2, m2) () m) A ^m	hatic compled
$d_{INF} = -XV\sigma(\sigma^{2}+n^{2}) + g\sigma(J_{M}n(A - + g^{2}V\sigma A_{M}A^{m}) - \frac{\chi}{4}(\sigma^{2}+n^{2})^{2} + \frac{1}{2}g^{2}A^{m}A_{M}(\sigma^{2}+k^{2})$	gr (Ino)A

In The unitary goinge, $\phi(x) = \frac{1}{\sqrt{2}} (v + \sigma(x))$ Then $\begin{aligned} \chi &= \frac{1}{2} \left(\partial_{\mu \sigma} \right) \left(\partial^{m} \sigma \right) - \mu^{2} \sigma^{2} \\ &- \frac{1}{4} F^{\mu \nu} F_{\mu \nu} + \frac{1}{2} g^{2} \gamma^{2} A_{\mu} A^{\mu} \end{aligned}$ + Lint $\begin{aligned} \lambda_{iNT} &= -\lambda_{V\sigma^{3}} + q^{2}V\sigma A_{\mu}A^{\mu} - \frac{\lambda_{\sigma}}{\gamma}\sigma^{\gamma} + \frac{1}{2}q^{2}A_{\mu}A^{\mu}\sigma^{2} \\ &= -\lambda_{V\sigma^{3}} - \frac{\lambda_{\sigma}}{\gamma}\sigma^{\gamma} + \frac{1}{2}q^{2}A^{\mu}A_{\mu}(2V\sigma + \sigma^{2}) \end{aligned}$

Question 6 Jutigk An) er ekik $\mathcal{D}_{\mu}' \varphi'$ v -ik(QE) eisk & + eisk (In tigk An) P -= -ik (JE) e \$ + e -iek (Jn +igk An) \$ + Eich ig KAM P (igkAn iek-+ique iek (Am - Am - f(d, s)) e iek Dr. P = Am + 1 2m E(x) 5. An Am

Question 7 We have $Q = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$ and $Y = \begin{pmatrix} \varphi_2 \\ \varphi_2 \end{pmatrix}$ a) The suitable Lagrangian density is $\mathcal{L} = (D_{\mu}\phi)^{T}(D^{\mu}\phi) - M_{s}\phi^{\dagger}\phi$ + \u00ed (ign Du - mp) 4 - I Fur Fann apre Du = Ju - ig T An Fur = Aur + g pabe An Ar Amy = Ju Ay - Jy An $\overline{7^{\alpha}} = \frac{\sigma^{\alpha}}{2} \qquad \left[\frac{\sigma^{\alpha}}{2}, \frac{\sigma^{b}}{2} \right] = \frac{\sigma^{c}}{2} \frac{\sigma^{b}}{2}$ $\int^{abc} = \varepsilon^{abc} \qquad \left[\frac{\sigma^a}{2}, \frac{\sigma^b}{2} \right] = \frac{1}{2} \int^{ab}$ From The notes we easily obtain 2 = 2 + 2 + 2 + 2 + 2 + + 2 + + 2 sta $\lambda_{D} = \Psi [i\gamma^{m}\partial_{\mu} - m]\Psi$ $\mathcal{L}_{s} = (\partial_{m}\phi)^{\dagger}(\partial^{m}\phi) - M_{s}^{2}\phi^{\dagger}\phi$ LA = - + Fur Faur 2D+A = g Vym Ta YAm $\lambda_{s+A} = i2 \left[\phi^{\dagger} T^{*}(\partial^{m} \phi) - (\partial^{m} \phi)^{T} T^{*} \phi \right] A_{m}^{*}$ + 1 2 2 Am A m pt [7,76], P

The last term can also be uniter 4 g² An A° ¢ t¢ b) The local SU(2) gauge transformations are $\varphi \rightarrow \varphi' = U\varphi$ $\psi \rightarrow \psi' = U\Psi$ $A_{\mu}\sigma^{\alpha} \longrightarrow A_{\mu}^{\prime \alpha}\sigma^{\alpha} = A_{\mu}^{\alpha} V \sigma^{\alpha} V - \frac{1}{2} \sigma^{\alpha} \partial_{\mu} \epsilon^{\alpha} \epsilon^{\alpha}$ where $-\frac{i}{2}\sigma^{\alpha}\varepsilon(x)$ $U = \varepsilon$ This leads to Furde Furde Fur USaU-is not invariant under local SU(2). $\overline{\psi} \varphi \psi' + \overline{\psi} \varphi \psi^2$ is not in romant under local SU(2) is not a Lorentz scalar. $\overline{\psi} \varphi + \varphi^{\dagger} \psi$ is not a Larentz scalar. Therefore none of The 3 terms are radial for this Theory.

Question 8

de = - + Fin Fan uhere Fin = Ain - glabe An Ar Ain = Din Ar - Dr An Consider The equations of motion of The gauge field An are given by Suler-Lagrange equations The Dr [DZA] - DZA DAG (DA A?)] JA? But 22A - 2 2(2mAv) 2(2mAv) [-4 Fars Fbars] $= -\frac{1}{4} \left[\frac{\partial F_{x,\beta}}{\partial (\partial_{y,A}x)} + \frac{F_{x,\beta}}{\partial (\partial_{y,A}x)} + \frac{F$ $= -\frac{1}{2} \frac{\partial F_{\alpha\beta}}{\partial (\partial_{\mu}A_{\mu}^{\alpha})} F^{b\alpha\beta}$ JEZS J().AS) $= \frac{\partial A_{ays}}{\partial (\partial_{\mu} A_{y}^{\alpha})} = \frac{\partial}{\partial (\partial_{\mu} A_{y}^{\alpha})} \left[\partial_{\alpha} A_{ys}^{\beta} - \partial_{\beta} A_{a}^{\beta} \right]$ [5 x 5 x - 5 x 5 x] 5 ab Sa J ZA D (D. A. 12 ~~ F • Also - 1 JFas F bays 2ZA

Transfore we obtain - Jn Farry + g Jabe Ab Ferry = 0

The Lagrangian density Zr = - J Fm Fam is also invariant under a glubal SU(N) transformation $A_{\mu}^{\alpha}T^{\alpha} = -\frac{\varepsilon^{\alpha}}{A_{\mu}} + \frac{A_{\mu}^{\alpha}T^{\alpha}}{A_{\mu}} = -\frac{UA_{\mu}^{\alpha}T^{\alpha}U^{-1}}{UA_{\mu}}$ U = emp(-isata), za val constants The corresponding infinitesimal Transformation is obtained from $U = |-i\epsilon^{\alpha}T^{\alpha} + O(\epsilon^{2})$ $A_{\mu}^{a}T^{a} = A_{\mu}\left(1 - i\varepsilon^{b}T^{b}\right)T^{a}\left(1 + i\varepsilon^{c}T^{c}\right) + O(\varepsilon^{2})$ $= A_{m}^{\alpha} \left[T^{\alpha} - i \left(\varepsilon^{5} T^{b} T^{\alpha} - \varepsilon^{c} T^{a} T^{c} \right) \right] + O(\varepsilon^{2})$ $= A_{\mu}T^{\alpha} - i \left[\epsilon^{\alpha}T^{\alpha}, A_{\mu}T^{\alpha} \right]$ $\delta(A_{\mu}^{\alpha}T^{\alpha}) = -i\left[\varepsilon^{b}T^{b}, A_{\mu}^{c}T^{c}\right] = -i\varepsilon^{b}A_{\mu}^{c}\left[T^{b}, T^{c}\right]$ = E An 1 bca Ta 20 SAm = pabe Eb Am Norther's Theorem yields Ju (= 0 $f^{\mu} = \frac{\partial Z_{A}}{\partial (\partial_{\mu} A_{\nu}^{\circ})} S A_{\nu}^{\circ}$ (note The pure over v and a) = - Fanv fabe & Av = fabe Av & Fanv = - fabe Ab & Favn

Honce Jyfr be b An 0 12 E -07 τ $= + \frac{1}{2} \int_{A}^{CV} \varepsilon^{C}$ fν Let e° Thom Avice The ankitrany we set one ler abe An Fa -9 abe An Fame JUN 2 av JAV with