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M | agrangian Formulation for Discrete Systems

Let us review the Lagrangian formulation of classical mechanics.
Consider a system described by a set of n generalized coordinates

o] 1=1,...,n configuration space
and the Lagrangian |_(qi Nl ,t) —T-V
t
Hamilton’s principle states that the action S = 2 dt L

has a stationary value for the correct path of the motion of the system in
configuration space with respect to the parameter t:

with o¢; =0 at t, and t,

0S = 0 = equations of motion
This yields the Euler-Lagrange equations of the coordinates

d al,‘ _oL =0 1=1...,n

dt og, g,
These n differential equations provide, when solved, the value of each
coordinates as a function of t. oL

The generalized momenta can be defined as P; = 20,
[
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B | agrangian Formulation for Discrete Systems
For example, consider the harmonic oscillator

_ . g
Let I" be the tension in the string. ‘
The restoring force on the mass is

F =-2Isina~ —2kg=-mw°q  where ®° =
Therefore (q q) 1 mom? q

T(0,q)= 1mq
L(g,q)=T -V =img* -ime’g’

Using the Euler-Lagrange equation we obtain the harmonic oscillator
equation

q'+002q:O
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B | agrangian Formulation for Discrete Systems
Now consider an n-mass harmonic oscillator

g ‘ A, o

Setting q, = g,.; = 0, we
see that the force on the
i mass is given by

F=-k(g—0)-k(q-0a,)=k(a,—20+0,,)

Therefore

=)

Vv (qi 1! ) =3k (Aqi )2 where AQ;, =0, —
i=0

. .2
T (qi’qi ) — Z%mqi
i=1
and we have the Lagrangian
n n

. . . _ i o ? _i 2
L(0,6)=T-V =2 3mq’ -3k (Aq,)
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B Lagrangian Formulation for Discrete Systems
The Euler-Lagrange equation yields

mg, =k(d,-29+9q,,) i=12...,n

These are n coupled differential equations. They can be decoupled by
suitable combinations of the g; that form modes.
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M Lagrangian Formulation for Fields
Consider a system described by a set of n fields
B 1=12,...,n field configuration space
P =@ (t’xi) { j=12,3

and the Lagrangian density Q(q;i , (pi,%,t, xjj
J

Hamilton’s Principle states that the action S = jQ dtdx dx,dx, #

has a stationary value for the correct path of the motion of the system
in field configuration space with respect to the parameters t and x;

with 00, (t, X; ) =0 on the hypersurface bounding 2

This yields the Euler- 0S=0 = equations of motion
Lagrange equations of These are n
the fieldsd ey 3. d ( 0. ) Py differential equations
( : j+ Z — =0 which provide, when
dt{ oo, -1 de a(%) 0, solved, the value of
O\ each field as a
We can also define the 0% function of the
canonical field conjugate i (X) - % parameters t and X;.
|
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B | agrangian Formulation for Fields
Now let us consider the n-mass harmonic oscillator in the limit n — oo.

We then have a vibrating string (PI
lim {q (t) ; i=12,....,n} =¢(t,X)
N — oo — X
Now both t and x play the role of continuous parameters. Using
d
AX=——=]1
o1 we get
. . L 2
V(9.9,%%)=lim 1k> (Aq,)
n—>oo 10
2 2
. I <[ Aq, 2 d op
= lim — > | —| (Ax) =iI'| dx | ==
ZAXZO:(AXJ SO Iod (8xj
n— oo =

Let A be the linear density of the string. Then T" = Av?
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B | agrangian Formulation for Fields
and we can write

P
V((p (p,a“’ax 1kvj dx (8Xj

n

T(9.¢,%%)=lim > img’
N — oo i<

_ 2 1 op
= |im 2AXZq,Ax xj dx(at

N — o0
Finally we can write the Lagrangian of the string

L((P1(.Pia(pax):T—V:J.oddX |:17L(aa(tpj 7\,V (
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B | agrangian Formulation for Fields
The action can be written

S:jdtL:jdth$

where the Lagrangian density is given by

0 0
7(0.9.%)= ”(a(tp) BV (a;fj

Using the Euler-Lagrange equation

d(@z}rd 0% | 0% _,

dt{ op ) dx 8(2—;") B
we get the field equation )
0° ¢ 1 0°¢ 0
ox°  v° ot

which is the wave equation of the string.
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B Covariant Formulation
The norm in Minkowski space is given by
(ds) = (dxo)2 —(dxl)2 —(dxz)2 —(dx‘*)2 =g, dx"dx’
where the metric tensor is diagonal with
o =1 011 =0, =0 =-1 (gw):(gu\/)
9,,9" =90, , the unit tensor or rank 2

This norm is kept invariant under inhomogenous Lorentz (or Poincare)
transformations, which contain 10 parameters

-

3 — special Lorentz
3 — spatial rotations
4 — space-time translations

. . |homogeneous Lorentz
Poincaré-

\

/
X" > X" =A X" +a" where g A" Ay =0,
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B Covariant Formulation

Infinitesimal (proper) Poincaré transformations can be expressed as
X" — x* =x"+¢ x" + 0"

where ¢ and ¢, are antisymmetric (6 parameters).

0 —dg -dg, -dg ~
(e} = —dg;, 0 do, -do, ® represents a spatial rotation
Vol-dg, —do; 0 do of angle o about its axis
—dg, do, —-do, O

0 -dg -dg, —dg, - B
{8 } _|dg, 0 —do, do, S = %argtanh (B)
wildg, deo, 0 —doy represents a boost of
dg, —do, do, 0 rapidity  about its axis

0 dg dg, dg

{gw} _| —dg, 0 —-do, do,
—dg, do, 0 —do

—dg, —-do, do, 0
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M Covariant Formulation

We have the following transformation properties under Poincaré
transformations:

o(X)——>¢'(X')=¢(x) scalar field

A (x)—2— A™(X') = A% A (x)

A () == A (X)=A,"A (x)

T (x)—2>T™ (X )= A% AYT®(X)  tensor field of rank 2
Note that since A*A  Is a scalar, we obtain

A = (A—l)vM

vector field

We wish to consider the Lorentz transformations for a covariant
formulation of physical laws. Then physical laws are formulated as
covariant equations between 4-tensor fields.
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M Covariant Formulation

Let A*and B* be 4-vectors. Then o
A = A'A =AA =g AA" = A°A’—A-A

—

A=A A) A =(A-A) As(ALALAY)
(R)=(A)  (A)=—(A) i-123

—_

A-B=A'B =g A'B'=AB"—A.B
The differential operators are given by

m- 0 _[8 0 08 0 :(£_§)
OX, \ OX, OX  OX, OX ox°’

aEQZ(f? 0 0 @):(Qﬁj
Hooxt \ox® Taxt T ox? ox® ox°

. : 0
The 4-divergence of a 4-vector is OA -
: . A — B
an invariant scalar: 0" A, =0, A" = %0 +V-A
The 4-Laplacian operator is defined to 0 = o4y — 0° _y2
be the invariant contraction B LT oy 02
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M Covariant Formulation

It is straightforward to cast the Lagrangian field formalism in a covariant
form. Consider a system described by a set of n fields

O, = O, (X“) 1=12,...,n field configuration space

and the Lagrangian density o@((pi,ﬁu(pi , X“)

Consider the action S = IQ d*x @

Hamilton’s principle states that the action has a stationary value for the
correct path of the motion of the system in field configuration space
with respect to the parameters x*:

with 0@; =0 on the hypersurface bounding €2
0S =0 = equations of motion
This yields the Euler-Lagrange equations of the fields

0F |_0% _
O 0(0,9;)) 9@ ’
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M Covariant Formulation

Note that the Lagrangian density is uncertain to any four-divergence of
a function of the fields. Consider

7—>9'=9+0,B" VB (o)
then S—>S’:S+J-Qd4x 0,B"
We can use the generalized Gauss theorem IQ d*x 0,B" :st do n B*

where do is an element of hypersurface ¢ bounding Q

n, IS a unit 4-vector normal outward to do

Therefore 35 — 85’ =85 +5¢ do n, B
but we have S(pj =0 onoc = o6B"=0 ono

Therefore S’ = 8S

which means that #Zand 2’ will yield the same equations of motion.
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B Noether's Theorem
From classical mechanics, we have seen that symmetries lead to

conservation laws: dp
space translation symmetry — ot =0
. . dE _
time translation symmetry — e 0
| dL _
space rotation symmetry — at " 0

Noether’'s theorem concerns continous transformations on fields:
symmetry of & — conserved currents and charges

Consider a system described by a set of n fields
(pi:(pi(x“) 1=12,....n
Consider the infinitesimal transformation
X' — X" = x" +8x" (x)
¢ (X) = 9 (X') = ¢; (x)+8¢; ()

where d¢;(X) includes changes in x and ¢;(x).
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B Noether’'s Theorem
Under this transformation we have

$(q>i (x),0,9, (x)) — y?’((pi' (x),0. 9 (x’))
We demand that under this infinitesimal transformation we have
form invariance

7'(97(x'),0,0/ (X)) = 2 (9} (x'), 0,9} (x))
scale invariance

S = de 7' (e{(x),0,0;(x)) = dQ 2(e,(x).0,0,(x))

If this is satisfied, we obtain (see Goldstein)
0,1"(x)=0 where f*(x)=2. 6x“+z (Zf )[Sq)i—(ﬁv(pi)ﬁxv}
uPi

That is we have a continuity equation for the (conserved) current f+(x).
We also obtain the conserved charge

dQ
gt =0 where Q= Ide )
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B Noether’'s Theorem

Consider a Lagrangian density that is form and scale invariant under
pure translations. We then have

8x" (x)=8"  constants
8o, (x)=0 no mixing of fields

Noether’s theorem then yields

0,1" =0 where T" =-2- g“v+za(2$)
=1 M(PI

where T is the energy-momentum tensor of the system. The following
parts can be identified:

T% - energy density

0",

TY > ithcomponent of the energy current density
TY jthcomponent of the momentum density
T > ithcomponent of the current density
for the jthcomponent of the momentum density
T — 3D stress tensor
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B Noether’'s Theorem
We also have the conserved charges

dP“_ TR Op
. =0 where P —jdVT

P is the conserved 4-momentum of the system. Note that

P’ =jdV kZ:;ﬂ;k@j(pk
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B Noether’'s Theorem

Consider a Lagrangian density that is form and scale invariant under
homogeneous Lorentz transformations. We then have

&x" (x) =€"x, Lorentz rotation
n
OP; (X) =g, %Z 2o, (X) where Zy" =-Z;"
j=1
where Z depends on the transformation properties of the fields. For
example,

scalar field ¢'(X)=¢(x)>8p(x)=0>Z=0
vector field (the index i becomes a Lorentz index)

o, (X)) =0, (X)+8f(pB (x) > 8¢, (X)= gf(pB (x)= 8043([)B (x)
- ng = 8355 — SZLSE

PHYS506B, spring 2005 Introduction to Gauge Theories 66



B Noether’'s Theorem
Noether’s theorem yields

O %MGB -0 %MGB _ _%MBG
u
M = (X —XBT““)+Zn:Zn: OF _zab¢

= 50(0,9)
We then have the conserved charges

dM op . of _ Ba Oap
qi =0 where M* =-M —J-dV/%

This is the conserved angular-momentum 4-tensor of the system. Its
space components form the angular momentum 3-vector of the system

M :(I\/I 23,|\/|31,|\/|12)

YE ZIdV {[XiToj JTOI:|+;bZ; oAz ab(Pb}

We see that the conserved angular momentum is composed of an
orbital part and an intrinsic or spin part that depends on the
transformation properties of the field!

PHYS506B, spring 2005 Introduction to Gauge Theories 67




B Noether’'s Theorem

In terms of the canonical field conjugates, we have
n

Y :jdv {Z[Xiﬂ:agjq)a _XjTCaﬁi(Pa:|+Zn:Zn:7Tang(Pb}

The orbital term does not mix field components, while the spin term
does through Z.
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B Noether’'s Theorem

Consider a Lagrangian density that is form and scale invariant under a
global phase transformation on the fields

(pj(X)—>(p'j(X)=elgj(pj(X) (no sum on j)
where g;are real constants. We then have
ox" =0
op; =lg;®; (nosumon j)
Noether’s theorem yields
T Tn_
0,)" =0 where ]" =

n

0%
j=1 8(6H(PJ

) €jP;
and the conserved charge

aQ
gt =0 where Q= jdV]
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B Klein-Gordon Field

In non relativistic guantum mechanics, the Schrddinger equation can be

obtained from p?
E="—
2m
with the substitution 5 )
E—o>li= :
o » P*—>10"
P—>-IV
An early attempt at building a one particle relativistic wave equation
considered the same substitution on

E?’=P?+m? o P?*=P"P, =m’
This yields the Klein-Gordon equation
2
(6,6" +m*)p=0

For m = 0O this is the same equation as a vibrating string with v=c = 1.
Assuming ¢ complex, we can write

(D+m2)(|)=0 (|:|+m2)(p* =0

PHYS506B, spring 2005 Introduction to Gauge Theories 70



B Klein-Gordon Field

As a one particle guantum mechanic wave equation, the Klein-Gordon
equation leads to negative probabilities and negative energies, and was
abandoned. Of course these problems do not occur in quantum field
theory, where we have only particles and antiparticles with positive
energy. Let's therefore treat the Klein-Gordon field as a classical field.
We therefore consider the Lagrangian density

7=(2,0) (2"0)-m'p’
Since ¢(x) is complex, we must consider

Y = Q((p, 0,0, (p*,ﬁu(p*)
The Euler-Lagrange equation then yields the

Klein-Gordon equation (|:|+m2 )(p =0 (|:|+m2 )(p* =0

Only one of them is independent.

We also have the following canonical conjugate fields

o(x)>m()=50=0"(x) ¢ ()>n ()= =0(x)
op 0"
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B Klein-Gordon Field

The Lagrangian density is clearly form and scale invariant under
Poincaré transformations. Noether’s theorem then yields the
conserved 4-vector momentum and 4-tensor angular momentum of the

field. Their spatial parts are

P =[av | (<im)(<iV ) (o) + (-in")(-1V) (¢")

M = [V [ (<im) (79 ) (o) (-in ) (7 =iV ) (o)

Note that only orbital angular momentum contributes. The Klein-
Gordon field has intrinsic spin 0. Upon quantization, it will represent
spin O particles and antiparticles.

We also note that the Lagrangian density is form and scale invariant
under a global phase transformation

i
o(x) = ¢'(x) =€"o(x)
where ¢ is a real constant. Noether’s theorem then yields the conserved
current

0,J" =0 where j“(X):i[(p*(é“(p)—(é“(p*)(p]

PHYS506B, spring 2005 Introduction to Gauge Theories 72



Hm Klein-Gordon Field do
and the conserved charge Q where — =0 and

dt
Q=[dV j°=[adV i(¢'p-¢'g)=[dV [(—in)cp—(—in*)cp*]
If we couple the Klein-Gordon field to the Maxwell field, this charge
becomes proportional to the electric charge.

It is interesting to compare with the Schrddinger probability density and
current densit -0 x )
Y p(x)=1"(X)=0"¢

k = Kk i * k k
s (x)= 1 (x) = [ 0" (%)~ (2"¢" )
Note that the spatial components are identical in form. But in the Klein-

Gordon case, p(Xx) contains time derivatives which lead to a non
positive definite p(x).

We can also consider a real Klein-Gordon field ¢(x). In this case we have
2 2 2
Qz%(@u(p)(ﬁ“(p)—%m o = (|:|+m )q):O

Note the 1/2 factor. Clearly, this Lagrangian density is not invariant under
a global U(1) phase transformation.

: P o =
> au1“=0:>5+v-s:o

J
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B Dirac Field

In an attempt to obtain a one particle relativistic quantum mechanical
wave equation that yields a positive definite probability density, Dirac
postulated the equation

%\tv (—IOL V+Bm)

and required y(x) to also satisfy the Klein-Gordon equation

(|:|+m2)\y =0
The following requirements on o; and {3 are obtained
[ocj,ock =00 + 0,0, =20

-1+

[ocj, :+ Eoch+Bocj =0
B =1

Clearly o, and 3 are no ordinary numbers. They can be represented by

matrlces Simple arguments show that they must be of even dimension
of at least 4.

v Is then a column matrix called a Dirac spinor.
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H Dirac Field 0 5 | 0
One possibility is the Dirac representation o = (6 8) B= (O —Ij

with the Pauli matrices © —(O 1) o —(O _ij o) —(1 Oj
1 {1 0 2 li 0 s 0 -1

We must ensure that the Dirac equation is covariant, that is invariant
under homogeneous Lorentz transformations. We introduce the

notation yo =B i = Baj
The y* are 4 4x4 matrices and they satisfy
Y Y YJT :—'Yj ut O.n.0
vy ] =2g" ot [ 1T

In the Dirac representation we have

o (1 0 N
! ‘(o —|j ! ‘(—oj 0

We can also introduce the useful slash notation: A= y“AJ
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M Dirac Field
The Dirac equation can now be written in the compact form

(id—m)y =0
(iy“@M — m)\u =0
or, with the Dirac spinor indices explicit,
4 _ 8
Z{I(yu)jk a?—méijk}\pk (x)=0

k=1
which are 4 equations for j=1, 2, 3, 4.

which stands for
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B Dirac Field
Consider the homogeneous Lorentz transformation
Xt —L— X" = A" X
and the corresponding spinor transformation
v (X)—=v'(X) = Sw(x)
If we require covariance of the Dirac equation
(iy“@Ll — m)\p(x) = O—A>(iy“8; — m)\p’(x’) =0
we obtain the constraint defining S
v = S_ly“SAuV or y“AMV = SyVS_1 or AY )y’ = S_ly“S
The matrix S that satisfies this constraint is
S= exp(+ié-6+%§-6) = exp(—lc“VAw)
where @ represents a spatial rotation of angle o about the axis @
c= b g arg tanh 3 represents a boost of rapidity ¢ about the axis B

AMV is obtained from A* = exp(A*,)
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M Dirac Field

—
~~~

23 31 12 = 01 02 03
and GE(G O ,O ) GE(G , O ,0 )
o

" =1 [v Y ]
Therefore S™ =v°S™*y?
The Dirac field transforms under an infinitesimal Lorentz transformation

as follows: 8\|I| (X) —g 1 Zuij ( ) where Zi;w _ —%GHV

v 2 J

uvt uv,. 0

=y'c"y

Also of interest is the y5 matrix

2
V=1 =YY = e YT Y=Y () =
Y = Yy ==y =~y

[ 5 5 i
Y ,GW:| =0 y'o' =10

. . 0 |
In the Dirac representation it becomes y5 =

| 0
Since &, (detA) =g, A* A" A° A%

we obtain S7'y°S = (detA)y”
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B Dirac Field

Consider the adjoint spinor field W = \VTY
then y (X)—2—y'(x") =Sy (x)

v (X) ==y (X) =y (x)S™

In order to build a covariant theory with spinors, we are interested in
classifying bilinear forms like

0

yly
where I' is a 4x4 complex matrix according to their behaviour under
homogeneous Lorentz transformations A*, and parity transformations

Ap*,. Clearly, 1 0 0 0)
0 -1 0 O
no_ —
A", = 0 0 -1 0 detA, =-1
0 0 0 -1

The equation A" v" = Sgly“SP is satisfied by S, =S.* = Sg =’

Then
SFjlySSP = _V5
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® Dirac Field
With all these relations we obtain
yy—o gy =gy
Yy —2—y'y' = yy
gy —o iy = AN yyty
+yyty, u=0

— U Ap v —
LAY AN {—\TJYHW’ u=123

o'y —oycty =AY AT oy

VY Y Y2y Yy = (detA) Ay y Yy

— 5
_, 5 vy vy, pu=0
e
iy VIS {ﬂwsv“w, p=1,2,3

\TIVSW%\T"VF’\V' = (detA)\va5\|f
r. 5

WYYy = gty
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M Dirac Field

Therefore, under homogeneous Lorentz transformations, we have the
following bilinear covariants

A
vty
Yo'y

1
4
6
4
1

scalar tensor rank O
vector tensor rank 1
antisymmetric tensor rank 2
pseudovector tensorrank 1
pseudoscalar tensor rank O

We can then use these bilinear covariants to build a covariant theory.
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M Dirac Field
We therefore consider the Lagrangian density

y=yliyo,-mly  §=y"°
o@:z(wj,au\yj,\?j,aﬂj) ] =1234

The Euler-Lagrange equations then yields the field equations:
Dirac equation (w“au _ m)\V -0

Adjoint Dirac eguation iauq—,y“ +my =0

Only one of them is independent. We also have the canonical field

. t - 1
conjugates 7(x) %:W(x)yc’:'\VT(X)

PHYS506B, spring 2005 Introduction to Gauge Theories

82



M Dirac Field
We can verify that the Lagrangian density is a scalar:

YA S>g' = \Tt'(x')[iy'“ﬁl'Lt — m]\y’(x')

v ()1 [, ~m]w' ()

=[sy(x)] v"[iy*A, "3, ~m ]Sy (x)

=y'STy° [iy“/\M ‘0, — m] Sy
Lt _yos—l : (+) =1

2" =y’ iy"A, Y0, —m Sy = [ iSTYHSA, Y8, -m |y
But the covariance of the Dirac equation defined S
S_ly“SAMV ="

Bu

SO

Therefore finally
= \Tt[iy“ﬁu —m]\y =%
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M Dirac Field

Clearly, the Lagrangian density is also scale and form invariant under
Lorentz transformations. Noether’s theorem then yields the conserved
4-momentum of the field

P! = JdV v'ioty  where ' (X) = —in(x)
and the conserved 4-tensor angular momentum of the field whose spatial
arts are = = =
P M :J-dV WT[FX—IV]w+jdV WT%G\V

Note that the orbital term does not mix field components, while the spin
term does. The spin term can be written as

jdV\y loy = jdV ZZ —In () Wy

where ~ a=1 b=l

S=(s's?s%) |s, sk]_uzgl“s' §?=3
The S matrices are a representation of the SU(2) _
algebra with j = 1/2. Therefore the Dirac field has S-1 ¢ O
intrinsic spin 1/2. In the Dirac representation we have 2\0 o
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M Dirac Field

We also notice that the Lagrangian density is form and scale invariant
under a global phase transformation

v(X) v () =e"w(x) W)y (x)=e"y(x)
where ¢ is a real constant.
Noether’s theorem then yields the conserved current

0,)" =0 where J* (x)=yy"y
and the conserved charge

C(Ij? 0 where jdV J J-dV A

If we couple the Dirac field to the Maxwell field, this charge becomes
proportional to the electric charge. Note that

-0 — 0 t
p(X)=1"(X)=yyy=vy'y

IS positive definite, as desired by Dirac. But the single particle

Interpretation of the Dirac equation leads to negative energies, which

where reinterpreted by Dirac. In the Dirac quantum field theory, there
are only particles and antiparticles with positive energies.
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B Maxwell Field

Consider the electric E (t r) and magnetic B (t I’) fields in the
presence of a charge density p(t r) and a current density | (t r )
Maxwell's equations, in the Heaviside-Lorentz system, read

V-E= p Gauss' Law
VxB= ]+%—t Ampere's Law
V-B=0 Gauss' Law
VxE = —%—? Faraday's Law
Local charge conservation is expressed as the continuity equation
% +V-]=0

ot

From the second pair of Maxwell's equations follow the existence of
scalar (I)(t r) and vector A(t r) potentials defined by

B=VxA E——Vd)—a—A
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Hm Maxwell Field

These equations do not determine the potential uniquely. For an
arbitrary function f (t, I’) , the transformations

¢—>¢'=¢+g—i A A =A-Vf

leave the electric and magnetic fields unaltered. These transformations
are called gauge transformations, and since the electric and magnetic
fields are the observables, any theory based on ¢ and the vector
potential must be gauge invariant.

We now express Maxwell's equations in terms of the potentials. The
second pair of equations are satisfied automatically. The first pair

becomes
_0(9%0 o x)
at(aﬁv Aj_p
~ =(0d = = =
DA+V(at-I—V A)—j
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B Maxwell Field
Maxwell's equations can be expressed in a covariant form with the 4-
o -
porente A (x)=(6(x). A()
and the antisymmetric tensor (and its dual)
uv _ AL AV _ AV AN = LV 1 lvpo
F*(x)=0"A"-0"A F* (x)=3€e""F _(x)
Note that the other sign convention is also used. We then have
v—> 0 1 2 3

0 -E, -E, -E,

E 0 -B, B

1Y _ 1 3 2
FY()=1g B o _p
E, -B, B O

v—> 0 1 2 3

0 -B, -B, -B,

. B 0 _E
1Y _ 1 3 2
R (x) = B, -E, 0 E
B, E, -E O
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B Maxwell Field
Using the current  |" (X) = (p(x), ](X))
Maxwell's equations take the compact form
TA-Y g A
0, F" = ] o0,F* =0
or equivalently 5 A* _ A* (5 A") = j*
O"F" +0"F" +0"F™ =0

From the definition of F+v, the second equation is a mathematical
identity. The continuity equation for the current follows from the
antisymmetry of F+v :

yIme 0,j* =0

Maxwell’'s equations are invariant under the gauge transformation
AY > AM =AY ot v (X)
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B Maxwell Field
Consider the Lagrangian density
— 1 v "
P=—3F"F, 1A
The Euler-Lagrange equation then yields the field equations:
Maxwell's equations (%F”V ="

The canonical field conjugate is given by
" (X) = _82 = FH+0
OA,
Since the Lagrangian density is scale and form invariant under Poincarée

transformations, we obtain the conserved 4-vector momentum and 4
tensor angular momentum of the field. Their spatial parts are

P=Jav | (<in)(-iV)(A)
M= [V | (<in*)(Fx=iV)(A, )|+ [dV 7x A
Notice the orbital and the spin parts on the angular momentum.
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B Maxwell Field
The intrinsic spin can be written as
N 3 3
jdVﬁxAzjdv ;;( )( ),-k A

where §:(S S ’Ss)

We obtain [Sa,Sb:|=i23:8abCSC §2:2|
c=1

We see that the S matrices are a representation of the SU(2) algebra
withj=1
Therefore the Maxwell field has intrinsic spin 1. Upon quantization, it

will represent spin 1 massless particles and antiparticles. Since the
Maxwell field is real, particles (photons) are their own antiparticles.

PHYS506B, spring 2005 Introduction to Gauge Theories 91



®m Maxwell Field

Note that the Lagrangian density (with a current) is not gauge invariant.
Under the gauge transformation

A AY =AM v (X)
it becomes ¢ S P =g juauf
but jorf=o(j,f)-fo"j, =0"(i.f)

IS a 4-divergence. Therefore # and 2’ both yield Maxwell’s equations.

Therefore the continuity equation for j* is a necessary and sufficient
condition for the gauge invariance of the theory.
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B Proca Field

Consider the massive real vector field Z+(x) governed by the free field
Lagrangian density

#=-1G"G, +iM?Z"'Z G" =o"2"-0"2"
The Euler-Lagrange equation then yields the field equations:
Proca eqguations
0,G" +M?2¥=0 or (o+M?)Z*-0"(0,2")=0
Note that this can be obtained from the free Maxwell’'s equations with
the substitution 0—0+M 2
Taking the divergence of the Proca equation yields
0,2" =0
which allows the Proca equation to be written as
(o+M?)Z¥ =0
We see that each component of Z follows a Klein-Gordon equation.
The canonical field conjugate is given by
nt (x) =L =G
oL

1}
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M Proca Field

Since this is the same as for the Maxwell field, the Proca field also has
conserved 4-vector momentum and 4-tensor angular momentum of the
field whose spatial parts are

P=[av |(-in*)(-iv)(z,)]
M= [V | (<in*)(Fx=iV)(Z,) |+ [dV 7xZ
revealing the spin 1 nature of the Proca field. Upon quantization, it will

represent massive spin 1 particles and antiparticles. Since the Proca
field is real, particles (eg the Z°) are their own antiparticles.

In the case of the free Maxwell field A%, both the Lagrangian density
and the Maxwell’s equations are invariant under the local gauge

transformation A s A AR L OHf v (X)

This is not the case for the free Proca field, where both the Lagrangian
density and the Proca equation are not invariant under the local gauge

transformation
Z4 7" =7"+0"f v (X)
Note that the mass term is seen to break gauge invariance.
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