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Chirality
The chirality of a fermionic matter field ψ is defined as the eigenvalue of 
γ5.  There are two possible eigenvalues

+1 ⇒ positive chirality
−1 ⇒ negative chirality

The chirality of the corresponding adjoint spinor field
0†ψ ≡ ψ γ

is the same by definition.
Spinor space can be divided in the corresponding two chiral subspaces 
by the use of the following projection operators

( )
( )

51
2

51
2

1

1
R

L

positive chirality

negative chirality

        

        

P

P

≡ + γ

≡ − γ

Indeed, using ( )25 Iγ =

we obtain 0R L R L L R
2 2

R R L L

P P I P P P P
P P P P

+ = = =
= =
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Chirality

Also using ( ) ( )20 5 0 5 5 0†
and          Iγ γ γ = − γ = −γ γ =

we obtain
0 0 0 0

† †
R R L L

R L L R

P P P P
P P P P

= =
γ = γ γ = γ

Hence we write 5 5

5 5
R R R R

L L L L

R L R L

γ ψ = ψ ψ γ = −ψ
γ ψ = −ψ ψ γ = ψ

ψ + ψ = ψ ψ + ψ = ψ

where ( ) ( )
( ) ( )

R R R L R R

L L L R L L

chirality

chirality

P P

P P

+

−

ψ ≡ ψ ψ = ψ = ψ ≠ ψ

ψ ≡ ψ ψ = ψ = ψ ≠ ψ

we note the important result, using 5 0,µ
+

⎡ ⎤γ γ =⎣ ⎦

L R R L

L L R R
µ µ µ

ψψ = ψ ψ + ψ ψ
ψγ ψ = ψ γ ψ + ψ γ ψ
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Chirality

The subscripts R and L are used because, in the limit of massless Dirac
fields, we have

1
1

helicity chirality        for massless Dirac spinors
chirality Right handed helicity
chirality Left handed helicity

helicity chirality    for massless Dirac adjoint spinors

   
          
          

  

= ψ
+ ⇒
− ⇒

= −
1
1

chirality Left handed helicity
chirality Right handed helicity

          
          

ψ
+ ⇒
− ⇒
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U(1) × SU(2)L
We now construct a Lagrangian density that is invariant under a U(1) ×
SU(2)L gauge transformation, which features only one massless neutral 
gauge field.  We only treat one family of leptons, namely the neutrino and 
the electron.  We adopt the following notations:

( )
( )

( ) ( )
( )

( ) ( ) ( ){ }
( ) ( )

( )

x
e x e

x
l x

e x
l x x e x

x
x

e x

−

ν ≡ ν
≡
⎛ ⎞ν

≡ ⎜ ⎟
⎝ ⎠

∈ ν

⎛ ⎞ν
ψ = ⎜ ⎟

⎝ ⎠

e

L
L

L

R R R

spinor

 spinor

  
 

,
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U(1) × SU(2)L
Consider the Lagrangian density, assuming that neutrinos are Dirac
particles,

( ) ( )
( ) ( )

e

L L R R L R R L e L R R L
l

i m e i m e
l i l l i l m m e e e e

µ µ
µ ν µ

µ µ
µ µ ν

= ν γ ∂ − ν + γ ∂ −

= γ ∂ + γ ∂ − ν ν + ν ν − +∑
L

In order to obtain the electroweak Lagrangian density, we wish to impose 
to the lepton fields a gauge invariance for each one of the two forces.  We 
therefore try

L L L R R R          U Ul l Ul l l Ul′ ′⎯⎯→ = ⎯⎯→ =
where

( )
( ) ( )

( )

1 2
0 0 0

1

1
2

2
2

2

a a a a
T

U U U
U it x t

iT xU
I

= σ

= ⊗
⎡ ⎤≡ − ε⎣ ⎦

⎧ ⎡ ⎤− ε⎪ ⎣ ⎦≡ ⎨
⎪⎩

is the weak hypercharge of doublets or singlets

L

L

on SU  doublets      

on SU  singlets

exp       

exp 

We immediately see that the mass terms are not gauge invariant. 
Therefore the lepton masses must be generated by a spontaneous 
symmetry hiding of SU(2)L. Furthermore, the SU(2)L gauge fields must be 
massive, given the short range of the weak force.

PHYS506B, spring 2005 Introduction to Gauge Theories 157



U(1) × SU(2)L

We introduce a doublet of complex scalar fields, and its conjugate

( )
0

20              i
+ ∗ ∗∗ − +

−

⎛ ⎞ ⎛ ⎞ϕ ϕϕ ≡ ϕ ≡ σ ϕ = ϕ = ϕ⎜ ⎟ ⎜ ⎟ϕ −ϕ⎝ ⎠ ⎝ ⎠

( ) ( )22 0† †         ϕ = −µ ϕ ϕ + λ ϕ ϕ λ >V
and the potential

In order to generate the lepton masses after symmetry hiding, we
introduce the following Yukawa coupling terms

† †
 Yukawa e L R R L L R R Lc l e e l c l lν⎡ ⎤ ⎡ ⎤= ϕ + ϕ + ϕν + ν ϕ⎣ ⎦ ⎣ ⎦L

where ce and cν are real constants.  Note that these terms are Lorentz
scalars, and are invariant under the U(1) × SU(2)L gauge transformations

L L L R R R             
             

U U

U U
l l Ul l l Ul

U U
′ ′⎯⎯→ = ⎯⎯→ =
′ ′ϕ⎯⎯→ϕ = ϕ ϕ⎯⎯→ϕ = ϕ

if ( ) ( ) ( ) ( ) ( )0 0 0 0 0t l t t e t t= ϕ + = ϕ + νL R R
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U(1) × SU(2)L

then we must have Q = T3 + αt0, where Q is the electric charge matrix (for 
SU(2)L doublets) or number (for SU(2)L singlets) in units of e.  We find

( )
( ) ( )
( ) ( )

0

0 0 0

0

1 1

0 0

t

q q

q q

+ −

∗

ν =
⎫ϕ = ⇒ ϕ = − ⎪
⎬

ϕ = ⇒ ϕ = ϕ = ⎪⎭

R

hence the notation
      

  
        

The value of α is conventional.  We choose it to be 1.  This now fixes all 
the t0’s.

Members of a given weak isospin doublet have the same hypercharge.  
Given that q(ν) = 0 and q(e) = -1, and noting that

( ) ( ) ( ) ( )3 3 1L Lq q e t t eν − = ν − =
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U(1) × SU(2)L

where

( )
( )

0

0 0

0 0

0

a a

a

ig t W igT W
D

ig t W
g g
t
W x
W x

µ µ µ
µ

µ µ

µ

µ

⎧ ′∂ + +⎪≡ ⎨ ′∂ +⎪⎩
′

L

L

 

for SU(2)  doublets

for SU(2)  singlets

and are real coupling constants
 is the weak hypercharge

 is the gauge field associated to the U(1) gauge

are t

   

0 0

a a abc b c

a a a

H W W
G W g W W
W W W

µν µ ν ν µ

µν µν µ ν

µν µ ν ν µ

≡ ∂ − ∂
≡ − ε
≡ ∂ − ∂

Lhe gauge fields associated to the SU(2)  gauge

( ) ( ) ( )
1 1
4 4

†

L L R R

 Yukawa

l
a a

l i D l l i D l D D

G G H H

µ µ µ
µ µ µ

µν µν
µν µν

= γ + γ + ϕ ϕ − ϕ

− − +

∑L V

L

We can therefore attempt the following Lagrangian density
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U(1) × SU(2)L

and where L is invariant under the U(1) × SU(2)L gauge transformation

( )
( )

0 0 0 01

1 1

L L L R R R
U U

U U

U
g

a a a a a a a aU
g

l l Ul l l Ul
U U

W W W x
T W T W UT W U T x

′µ µ µ µ
−

µ µ µ µ

′ ′⎯⎯→ = ⎯⎯→ =
′ ′ϕ⎯⎯→ϕ = ϕ ϕ⎯⎯→ϕ = ϕ
′⎯⎯→ = + ∂ ε

′⎯⎯→ = + ∂ ε

We require that there be only one massless neutral gauge field, the 
electromagnetic field Aµ(x) .  In general, it will be a linear combination of 
Wµ

0 and Wµ
3.

3

0

0

3

W W

W W

W W

W W

cos sin
sin cos

cos sin
sin cos

W Z
AW

A W
Z W

µ µ

µµ

µ µ

µ µ

⎛ ⎞ ⎛ ⎞θ θ⎛ ⎞≡⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − θ θ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ θ θ⎛ ⎞≡ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− θ θ⎝ ⎠⎝ ⎠ ⎝ ⎠

or
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U(1) × SU(2)L

( )1 2 1 21
2

           W W iW T T iT± ±
µ µ µ≡ ≡ ±∓

we can rewrite the covariant derivative in the form

( )
( )
( )

3 0

3 0

2
W W

W W

            sin cos

            cos sin

igD T W T W

i gT g t A

i gT g t Z

+ + − −
µ µ µ µ

µ

µ

= ∂ + +

′+ θ + θ

′+ θ − θ

Since we want Aµ to be the electromagnetic gauge field, we require
3 0gT g t eQ′θ + θ =W Wsin cos

where θW is the Weinberg angle, to be determined by experiments, and 
Zµ will be a massive neutral gauge field.  Using

where, as before, Q is the electric charge matrix (for SU(2)L doublets) or 
number (for SU(2)L singlets) in units of e.
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U(1) × SU(2)L

Since 3 0Q T t= +
then we get W Wsin cose g g′= θ = θ
which yields

2 2Wtan            g gge
g g g

′ ′
θ = =

′+
The covariant derivative takes the form

( )
2

igD T W T W ieQA ieQ Z+ + − −
µ µ µ µ µ µ′= ∂ + + + +

where the neutral charge matrix is given by
3 0

3 0
gT g t eQ

Q T t
′ ′θ − θ =

′ = θ − θ
W W

W W

cos sin
cot tanor
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U(1) × SU(2)L

We can summarize the quantum numbers as follows:
t t t q q3 0

1
2

1
2

1
2

1
2

1
2

1
2

2

2

1
2

1
2

1
2

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2

2
0 1
1 1 2

0 0 0 0 0
0 0 1 1 2

1 1 2
0 1
0 1
1 1 2

′
−

− − − − +

− −
−

− −
−

− − − − +

sin

sin

sin
sin

sin

θ

θ

θ
θ

θ

W

W

W

W

W

ν

ν

ϕ
ϕ

ϕ
ϕ

L

L

R

R

e

e

F
HG
I
KJ

F
HG
I
KJ

−
F
HG
I
KJ

+

−

0

0

t, t3 is for weak isospin and t0 is for weak hypercharge
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U(1) × SU(2)L

Nothing that 0
0

W
T W T W

W

+
µ+ + − −

µ µ −
µ

⎛ ⎞
+ = ⎜ ⎟⎜ ⎟

⎝ ⎠
we can also write

1
1 1 2

1
2 22

ieq A ieq Z igW
D

igW ieq A ieq Z

+
µ µ µ µ

µ −
µ µ µ µ

⎛ ⎞′∂ + +
= ⎜ ⎟⎜ ⎟′∂ + +⎝ ⎠

where qj and qj′ are for the corresponding multiplet member 
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Higgs Mechanism
The mass terms are generated by the Higgs mechanism, which leads to 
a renormalizable quantum field theory.  As before, we consider the case 
µ2  > 0 where we choose the equilibrium point

2

0
2

0
02

V          v⎛ ⎞ µϕ = ≡ >⎜ ⎟ λ⎝ ⎠
We then expand the scalar field about this equilibrium

( ) ( ) ( )
( ) ( )

1 2

3

1
2 v

x i x
x

x i x
⎛ ⎞η + η

ϕ = ⎜ ⎟+ σ + η⎝ ⎠
The ηj fields are the unphysical would-be Goldstone bosons, and can be 
eliminated by going to the unitary gauge

( ) ( )
01

2 vx x
⎛ ⎞

ϕ = ⎜ ⎟+ σ⎝ ⎠
Gauging away the charged ϕ+ will insure Aµ to be massless.
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Higgs Mechanism

After symmetry hiding, the Lagrangian density can be written as

 D  V  H  DV  H′= + + + +L L L L L L

where
 D

 V

 H

 DV

 H

free Dirac spinor matter fields
pure gauge fields
pure Higgs field
interaction between matter fields and gauge fields
interaction between Higgs fields and other fields

 
 
 
 
 

=
=
=
=

′ =

L
L
L
L
L
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Masses
We first concentrate on obtaining the mass terms.  We first obtain

( )
( )( )

1
21 1

2 2

v0
v v

igW
D D

ieq A ieq Z

+
µ

µ µ
µ σ µ σ µ

⎛ ⎞+ σ⎛ ⎞ϕ = = ⎜ ⎟⎜ ⎟+ σ ⎜ ⎟′∂ σ + + +σ⎝ ⎠ ⎝ ⎠
Extracting the kinetic and mass terms from

( ) ( ) ( )†
D Dµ

µϕ ϕ − ϕVand           

yields ( )( )
( )( )

21 1
2 2

2 2 2

g W W

e q A q Z q A q Z

+ −µ µ
µ µ

µ µ
σ µ σ µ σ σ

⎡ + ∂ σ ∂ σ⎣
⎤′ ′+ + + −µ σ⎦

2

2

v

                      v
Since qσ = 0, we obtain no mass term for the photon field, as desired

0M =A
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Masses

We obtain the kinetic and mass terms

( )( )2 21 1 1
2 2 2M W W M M Z Z+ −µ µ µ

µ µ µ+ ∂ σ ∂ σ − σ +2 2
W H Z

where 2 21
4

2
2 2

2

2

1 1cos4cos
2 2

M g
MgM e q M

M

σ

=

′= = = >
θθ

= µ = λ

2
W

2
2 2 Z
Z

W WW
2 2
H

v
vv            

v
for later use, we note that then

( )

( )

1
2

1
2

sin 2

igW
D ieZ

+
µ

µ µ
µ

⎛ ⎞+ σ
⎜ ⎟ϕ = ⎜ ⎟∂ σ − +σ⎜ ⎟θ⎝ ⎠W

v

v
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Masses

The lepton mass terms are extracted from the Yukawa coupling terms, 
which now read

( ) ( ) ( ) ( )[ ]1 1
2 2

c e e e e c c ee cν ν⎡ ⎤+ σ + + ν ν + ν ν = +σ + νν⎣ ⎦e L R R L L R R L ev v
yielding the mass terms

m m eeν− νν − e

1
2

1
2

m c
m c

ν ν= −
= −e e

v
vwhere

The corresponding kinetic terms are readily extracted yielding the free 
spinor Lagrangian density

l

l

l i l l i l m m ee

e i m e i m

i M

µ µ
µ µ ν

µ µ
µ µ ν

µ
µ

= γ ∂ + γ ∂ − νν −

⎡ ⎤ ⎡ ⎤= γ ∂ − + ν γ ∂ − ν⎣ ⎦ ⎣ ⎦
⎡ ⎤= ψ γ ∂ − ψ⎣ ⎦

∑L D L L R R e

e

where we have the lepton mass matrix 0
0l

mM m
ν⎛ ⎞= ⎜ ⎟

⎝ ⎠e
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Interactions
Using 3

0
cos sin
sin cos

W Z
AW

µ µ

µµ

⎛ ⎞ ⎛ ⎞θ θ⎛ ⎞≡⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − θ θ⎝ ⎠⎝ ⎠⎝ ⎠
W W

W W

the pure gauge field Lagrangian density takes the form
21 1 1 1

4 4 2 2F F Z Z M Z Z W W M W Wµν µν µ + −µν + −µ
µν µν µ µν µ− − + − +

+ +
=L

L L

2
 V Z W

               VVV  VVVV

where

( )1 21
2

F A A A
Z Z Z
W W iW W W

µν µν µ ν ν µ

µν µ ν ν µ
± ± ±
µν µν µν µ ν ν µ

≡ = ∂ − ∂
≡ ∂ − ∂

≡ = ∂ − ∂∓

and the vector boson gauge fields triple and quartic couplings
1
2

21
4

abc a b c

abc ars b c r s

g W W W
g W W W W

µ ν
µν

µ ν
µ ν

= ε
= − ε ε

L

L
 VVV

 VVVV
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Interactions

The interaction between the matter fields and the gauge fields is readily 
extracted to be

= + +L L L LDV  em  neutral  chargedwhere

( ) ( )

( ) ( )

1 1
2 2

5 51 1
2 2

51
2

1 1
2 sin

1
2 sin

 em L L R R

 neutral L L R R

 charged L L L L

W

W

l

l

eA l Ql eA l Ql eA Q

eZ l Q l eZ l Q l eZ Q

gW e gW e
e W e W e

e T W T W

µ µ µ
µ µ µ

µ µ µ
µ µ µ

+ µ − µ
µ µ

+ µ − µ
µ µ

+ + − − µ
µ µ

= − γ − γ = − ψγ ψ

′ ′ ′= − γ − γ = − ψγ ψ

= − ν γ − γ ν

⎡ ⎤= − νγ − γ + γ − γ ν⎣ ⎦θ

= − ψ + γ − γ ψ
θ

∑
∑

L

L

L
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Interactions

Note that this can be also written as
A j
Z j
W j W j

µ
µ

µ
µ
+ +µ − −µ
µ µ

= −
= −
= − −

L

L

L

 em em

 neutral neutral

charged charged charged

where

( )51
2 1

2 sin

em

neutral

charged
W

j e Q
j e Q

ej T

µ µ

µ µ

±µ ± µ

= ψγ ψ
′= ψγ ψ

= ψ γ − γ ψ
θ
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Interactions

The interaction with the Higgs field is extracted
′ = +L L L H  HD  HV

where LHD is extracted from the Yukawa couplings
1 1 1
2 2 lc ee c Mν= − σ − σνν = − σψ ψL HD e v

and LHV is extracted from ( ) ( )†
D Dµ

µϕ ϕ

( ) ( )1
2M W W M Z Z+ −µ µ

µ µ+ σ σL 2 2 2 1
 HV W Z v 2v= 1+

Finally, the Higgs self interaction is obtained from –V(ϕ) and is included 
in the pure Higgs Lagrangian density

( )( ) ( )2 31 1 1 1
2 2 2 41M Mµ

µ= ∂ σ ∂ σ − σ − σ + σL 2 2
 H H Hv v
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Quarks and Families
We now wish to include 
quarks in our classical field 
electroweak theory, and 
allow for quarks and lepton 
family replication.  Most of 
the development is 
straightforward, except for 
the emergence of a 
difference between gauge 
eigenstates and mass 
eigenstates.
First we need to extend our 
notation to family matrices, 
here shown for two families:

( ) ( )
( ) ( ) ( )

( )

( )

( )
( )
( )
( )

( ) ( )
( )

( )
( )

( )

( )
( )
( )
( )

,

e

eL

L
L

L

L

eR R
R

R R

e

           
x e x

x e x
x x

x
e x

l x
x
x

x e x
l x

x x

x
e x

l x
x
x

µ

µ

µ

µ

⎛ ⎞ ⎛ ⎞ν
ν = =⎜ ⎟ ⎜ ⎟ν µ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ν
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞ν
⎜ ⎟⎜ ⎟⎜ ⎟µ⎝ ⎠⎝ ⎠
⎧ ⎫⎛ ⎞ ⎛ ⎞ν⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟ν µ⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎛ ⎞⎛ ⎞ν
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞ν
⎜ ⎟⎜ ⎟⎜ ⎟µ⎝ ⎠⎝ ⎠

Leptons:
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Quarks and Families

( ) ( )
( ) ( ) ( )

( )

( )

( )
( )
( )
( )

( ) ( )
( )

( )
( )

( )

( )
( )
( )
( )

,

L

L
L

L

L

R R
R

R R

u du            d
c s
u
d

q
c
s

u dq
c s

u
d

q
c
s

x xx x
x x

x
x

x
x
x

x xx
x x

x
x

x
x
x

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠= ⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪∈ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠= ⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Quarks:
Note that quarks come in 3 
colours, that is each one of 
the quark symbols on the 
right is a matrix in colour
space, for example

( )
( )
( )
( )

red

green

blue

s
s s

s

x
x x

x

⎛ ⎞
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟
⎝ ⎠
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Quarks and Families
t t t q q3 0

1
2

1
2

1
2

1
2

1
2

1
2

2

2

1
2

1
2

1
6

2
3

4
3

2

1
2

1
2

1
6

1
3

2
3

2

2
3

2
3

4
3

2

1
3

1
3

2
3

2

1
2

1
2

1
2

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2

2
0 1
1 1 2

0 0 0 0 0
0 0 1 1 2

1
1

0 0
0 0

1 1 2
0 1
0 1
1 1 2

′
−

− − − − +

− −
−

− − − +
−

− −
−

− −
−

− − − − +

sin

sin

sin
sin
sin
sin
sin
sin

sin

θ

θ

θ
θ
θ
θ
θ
θ

θ

W

W

W

W

W

W

W

W

W

0

0

L

L

R

R

L

L

R

R

u
d
u
d

e

e

+

−

ν⎛ ⎞
⎜ ⎟
⎝ ⎠
ν

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ϕ
⎜ ⎟ϕ⎝ ⎠
⎛ ⎞ϕ
⎜ ⎟−ϕ⎝ ⎠

We can then expand 
the fermion quantum 
number table:
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Quarks and Families

In the case of one lepton family, we had
2 2

 Yukawa L R L e Rv vc.c. c.c.l m l m eν
⎡ ⎤ ⎡ ⎤− = ϕ ν + + ϕ +⎣ ⎦ ⎣ ⎦L

which became, in the unitary gauge,
( )[ ]11 Yukawa ev m em eν− = + σ ν ν +L

In the case of nf families of leptons and quarks, we have
2 2

2 2

 Yukawa L R L e Rv v

L u R L d Rv v

c.c. c.c.

q u c.c. q d c.c.

l M l M e

M M
ν

⎡ ⎤ ⎡ ⎤′ ′− = ϕ ν + + ϕ +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤′ ′+ ϕ + + ϕ +⎣ ⎦ ⎣ ⎦

L

where the M' are nf × nf complex matrices.  In the unitary gauge, this 
becomes

( )11 Yukawa e u dv u u d dM eM e M Mν⎡ ⎤′ ′ ′ ′− = + σ ν ν + + +⎣ ⎦L
It turns out that an arbitrary complex matrix M ' can be diagonalized
with real positive elements using a biunitary transformation

1 † †
1 2 1 1 2 2where          A M A M A A A A I− ′ = = =

and M is diagonal with real positive elements.
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Quarks and Families

Concentrating on the quark sector, we can write
†

†
u L u R R u L L u R

d L d R R d L L d R

u u u u u u u u c.c.
d d d d d d d d c.c.

M M M M
M M M M
′ ′ ′ ′= + = +
′ ′ ′ ′= + = +

since M' does not act in Dirac space.  There exists 4 unitary matrices 
such that 1 1

† † † †
L u R u L d R d

L L R R L L R R

       A M A M B M B M
A A A A B B B B I

− −′ ′= =
= = = =

where Mu and Md are diagonal with real positive elements.  We then set
1 1

1 1
L L L L R R R R

L L L L R R R R

u u u           u u u
d d d            d d d

A A
B B

− −

− −

′ ′→ = → =
′ ′→ = → =

such that we obtain
1 1

u L L L u R R R L u R u

d d

u u u u c.c. u u c.c. u u
d d d d

M A A M A A M M
M M

− −′ ′ ′ ′ ′ ′= + = + =
′ ′ ′=

That is the u' and d' fields are mass eigenstates.
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Quarks and Families

The u and fields are gauge eigenstates, that is they are the ones mixing 
in the weak charged current, eg

( ) ( )5 51 1
2 21 1

2 sin 2 sin

2 sin

charged
quarks W W

L L
W

q q u d

u d

e ej T

e

+µ + µ µ

µ

= γ − γ = γ − γ
θ θ

= γ
θ

Since and   u u uu     d d dd′ ′ ′ ′= =
the electromagnetic and neutral currents are not affected by the change 
of basis for the fermion fields.  We can now redefine u and d to be 
mass eigenstates fields, and u' and d' to be the gauge eigenstates
fields.  The Lagrangian density after symmetry hiding does not change, 
except the charged current, eg

1

2 sin 2 sin

2 sin

charged L L L L L L
quarks W W

LL
W

u d u d

u d

e ej A B

e

+µ µ µ −

µ

′ ′= γ = γ
θ θ

= γ
θ
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Quarks and Families

where 1 †
L L L L Ld d d             A B V V V I−≡ = =

V is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix.  It can be 
shown that the nf x nf unitary matrix V has

( )
( )( ) ( )

1
22

1
2

1
1

1 2
f f

f
f f

angles
free parameters

ind. phases
  

n n
n

n n
⎫−

−⎬− − ⎭
Similarly we have †

2 sin Lcharged charged L
quarks quarks W

d uej j−µ +µ µ⎛ ⎞
= = γ⎜ ⎟ θ⎝ ⎠

After symmetry hiding, we then have the Lagrangian density

D  V  H  DV  H′= + + + +L L L L L L
where the modified terms are

 D e

u d

 DV  em  neutral  charged

     u u d d
e i M e i M

i M i M

µ µ
µ µ ν

µ µ
µ µ

⎡ ⎤ ⎡ ⎤= γ ∂ − + ν γ ∂ − ν⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ γ ∂ − + γ ∂ −⎣ ⎦ ⎣ ⎦

= + +

L

L L L L
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Quarks and Families

where

( ) ( )5 51 1
2 21 1

2 sin

2 sin

 em em

 neutral neutral

 charged charged charged

em q

neutral q

charged
W

Lcharged L
W

        

q q
q q

q q

u

l

l

A j
Z j
W j W j

j el Q l e Q
j el Q l e Q

ej lT l T

ej e

µ
µ

µ
µ
+ +µ − −µ
µ µ

µ µ µ

µ µ µ

±µ ± µ ± µ

+µ µ

= −
= −
= − −
= γ + γ

′ ′= γ + γ

⎡ ⎤= γ − γ + γ − γ⎣ ⎦θ

= ν γ +
θ

L

L

L

2 sin

LL

L Lcharged L L
W

L L

L L

d

d u

d d

ej e

V
e V e

µ

−µ µ µ

⎡ ⎤γ⎣ ⎦

⎡ ⎤= γ ν + γ⎣ ⎦θ
≡

′≡
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Quarks and Families

and  H  HD  HV′ = +L L L
1

 HD e u dv u u d deM e M M Mν⎡ ⎤= − σ + ν ν + +⎣ ⎦Lwhere

Note that if Mν ≡ 0, then L Le e=

and there are no differences between neutrino mass and gauge 
eigenstates.
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Free Parameters
We have first considered a classical field theory with one lepton field 
family, but with massive neutrino.  We identify the following free 
parameters, to be determined by experiments:
Before symmetry hiding:

2, , , , ,eg g c cν′ µ λ
After symmetry hiding:
We can consider the set

e m me, , , , ,θ λ νW v
2

2 2
tan

2 2

2
W

e e

                    v

             

gg ge gg g

m c m cν ν

′ ′ µ= θ = =
λ′+

µ µ= − = −
λ λ

where
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Free Parameters

Or we can also consider the set
, , , , ,W Z H eM M m mνα θ

2 2
21 1

4 4 2 2

2 2 2
2 2

2 2 2 2
4cos 4 cos

2
2 2
Z H

W W

v           v

g ge
g g

g gM M

π π

′
α = =

′+
µ= = = λ = µ

θ λ θ

where

Note that we also have
2 2 2 2

21
4 2

2

2 2
4 8 8 sin

21
cos 8

2 2
W

F F W
2
W

F2 2
WZ W

v

        

g g eM g G G
M gG
M M

µ= = = =
λ θ

= =
θ
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Free Parameters

In the case of nf families, we have 
After symmetry hiding:

( )

( ) ( )
( ) ( )

2

2 2

2

0 0
, , , 4

0
1 0

, 2 2
1 1

3 1 5

W Z H

e f f

f

f

u d f f

f f

f f f

4
Leptons

Quarks

TOTAL 2

M M
M M

M n n
M n
V n

M M n n
V n n

n n n

ν ν

ν

≠ =
α θ

′ −

− −

+ + +
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Free Parameters

Therefore 2 0 14
0 11

3 0 24
0 17

f

f

n M
M

n M
M

ν

ν

ν

ν

= ≠ →
= →

= ≠ →
= →

Note that other parameters appear in the corresponding quantized
theory!
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Running Coupling Constant
Consider a dimensionless observable R that depends only on one 
physical scale Q.  This means that we assume Q >> all masses. From 
dimensional scaling, one would expect that R is then a constant 
independent of Q.  This is not the case in a renormalizable quantum 
field theory, where we obtain

2

2 ,QR R ⎛ ⎞
= α⎜ ⎟µ⎝ ⎠

where µ is the renormalization scale at which the subtraction of 
divergences are performed
α is the renormalized coupling constant used as a basis for a 
perturbation expansion of R.  It depends on µ.

Therefore in general R will depend on Q. 
But µ is arbitrary, and is not part of the Lagrangian of the theory.  Any 
observable cannot depend on the choice of µ.  We can therefore write 
the renormalization group equation

( ) ( )2 2

2 2
2 2 2

2 2, , 02
d

d
Q QR R
µ µ

⎡ ⎤∂ ∂α ∂µ α = µ +µ α =⎢ ⎥∂αµ ∂µ ∂µ⎣ ⎦
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Running Coupling Constant

Let ( )2
2

21
2

n  , Qt
µ

∂α≡ β α ≡ µ
∂µ ( ) ( )2

2 , 0QRt µ

∂ ∂⎡ ⎤− +β α α =⎢ ⎥∂ ∂α⎣ ⎦
then

We can solve this equation by introducing a new function α(Q), the 
running coupling constant, defined by

( )
( ) ( )d               
Q xt

x
α

α
= α µ ≡ α

β∫
The β(α) functions can be obtained from perturbation theory.  They 
govern the running of α(Q).  From this definition we can obtain

( ) ( )( ) ( ) ( )( )
( )           

QQ Q
Qt

β α∂α ∂α
= β α =

∂ ∂α β α
From these we can show that R(1, α(Q)) is also a solution of the 
renormalization group equation:

( ) ( )( )1, 0R Qt
∂ ∂⎡ ⎤− +β α α =⎢ ⎥∂ ∂α⎣ ⎦

This is an important result.  It shows that ALL the physical scale Q
dependence of R enters through the running of the coupling constant.
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Running Coupling Constant

That is, one computes 
2

2 ,QR ⎛ ⎞
α⎜ ⎟µ⎝ ⎠

to fixed order in perturbation theory. 

Then setting µ = Q and α → α(Q) allows a prediction of the variation of 
R with Q; the residual dependence of R on µ is at the next order. 
Note that only the variation of α with the scale Q is predicted, not the 
absolute value of α.  The value of α (at a given scale where the theory 
is in the perturbation domain) has to be obtained from experiment.
Another approach (useful in QCD) is to introduce a parameter Λ
(dimension of energy) that represents the scale at which the coupling 
becomes very large

( )( )

2

21 dn
Q

Q x
x

∞

α
= −

βΛ ∫
Consider the perturbative development of β(x)

( ) ( )( )2 21x bx b x O x′β = − + +
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Running Coupling Constant
If we keep only the leading order we obtain

( ) 2 2

2 2

1
1 1 1 1n nQ Q

Q b t b b
µ Λ

α αα = = =
+ α + α

( ) ( )and     α µ = α α Λ →∞We see that

In QED, not including any QCD effect but including the quarks, one 
obtains ( ) ( )2 3 21

3 f c
f

where       x bx O x b e Nπβ = − + = − ∑
and the sum runs over all fermions of charge ef such that mf << Q << all 
other masses.  The number of colours Nc is 3 for quarks and 1 for 
leptons.
Since b < 0, we see that αQED(Q) increases with Q.
Experimentally, therefore, we can obtain α(Q) at vanishing Q.  
Setting Q = µ = me we obtain

( ) 1
137.0QED emα = α = α ≈

The coupling becomes strong at
1

2
QED e

bm e
−

αΛ =
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Running Coupling Constant
In this case, we assume Q << all masses except me, and we have

1
646 2801

3 ~ ~ 10QED

e
    b emπ

Λ
= − →

If we consider a very large physical scale Q = M, then 

( ) ( )( )
( )9

2 2 80.7 3581 2 1
3 3 3 33 9 ~ ~ 10QED    b eMπ π

Λ⎡ ⎤= − + + = − →⎢ ⎥⎣ ⎦
where we have assumed α(M) ≈ α since it runs very slowly in QED.  
We see that α(Q) runs faster with Q if more fermions are included.  
So QED is safely in the perturbative domain at all experimentally 
reachable energies.
We see that in QED higher order corrections and renormalization 
modify the coupling, and hence the electron charge.

PHYS506B, spring 2005 Introduction to Gauge Theories 192



Running Coupling Constant
For example,  in the case of e- µ- scattering, we have the following 
Feynman diagrams of order α2 that modify the electron charge 

e−

−µ

e−

−µ

e− e−

−µ −µ

e− e−

−µ
−µ

e− e−

e−e+

−µ −µ
Due to a Ward identity, only the propagator loop diagram contributes to 
the modification of the charge.  This is true to all order in perturbation.
Thus we see that using the running coupling constant is equivalent to 
summing all diagrams with loops in the photon propagator.  
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Running Coupling Constant
Summing all diagrams with detached loops

is equivalent to using the running coupling constant obtained with      
β(x) = −bx2, which is also called the leading order in β(x) or the leading 
log order in α(Q).

1 1
er Q m− −≥ ≈

the screening felt is maximum, and the 
charge measured is the conventional 
electron charge. 

+

−

+

+

+

+

+
+

+

−

−−

−

−− −

+The increase of α(Q) with Q means 
that the effective charge of the electron 
increases with decreasing distance 
1/Q. This is attributed to the cloud of 
e+ e- around the electron that 
effectively screen its charge.  At large 
distances 

The charge felt outside 
the circle is less than 1.
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Running Coupling Constant
The inclusion of mass effects is a tricky business.  For example, one 
obtains (hep-ph-9502298) the leading log result

( ) 2
5

3 31 1 z
2
f

Z 2
f

f
n M

c m

M
e Nα

π

αα =
⎡ ⎤− −⎣ ⎦∑

where the sum includes all fermions except the top quark.  Using the 
PDG average for the mass of each quark, one obtains

( ) 1
128ZMα = > α

So we see that in QED the coupling constant does not run very fast.

In QCD, one obtains ( ) ( )( )

( )

2 21
33 2 153 19

12 2 33 2
f f

f

     

x bx b x O x
n nb b

n

′β = − + +

− −′= =
π π −

where

and nf is the number of flavours of quarks that satisfy mq << Q.  All other 
quark masses are assumed much heavier than Q.
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Running Coupling Constant
Since b > 0 we see that αs(Q) decreases with 
Q.  This leads to asymptotic freedom.  The 
coupling becomes very small at large Q
(small distance).  Experimentally, one 
measures αs at a given scale Q.  But since 
αs(Q) diverges at small Q, it is customary to 
seek experimentally the scale Λ = ΛQCD at 
which αs diverges.  We expect Λ to be of the 
order of meson and baryon masses.

The positive value of b comes from the gluon 
loop contributions.  It is a consequence of the 
non-abelian SU(3) nature of the colour group.

u

q

dd

u

g

d d

u u

The gluons have an antiscreening effect on the colour charge which 
increases at large distances.  This is due to the fact that gluons carry 
colour.
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Running Coupling Constant
Since β(x) changes when the scale Q crosses quark mass thresholds, Λ
must also change ( )fnΛ→Λ
Furthermore, since the perturbation expansion is truncated at some 
order, the observable and the definition of Λ depend on the 
renormalization scheme used.
Prescriptions exist on the correspondence between values of Λ for nf
and nf – 1. The relation between Λ for different renormalization 
schemes can be computed.
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Running Coupling Constant
Therefore a determination of αs normally proceeds as follows:

measure an observable with strong interaction effects at a certain 
energy scale Q;

compute the expected observable to a given order in αs(Q)
(choose a renormalization scheme); 

extract αs(Q) from data;
evolve αs(Q) to another scale (typically MZ) to compare with other 

experiments;
define αs(Q) in terms of Λ;
extract Λ from αs(Q) from data;
convert Λ to an appropriate renormalization scheme (typically the 

modified minimal subtraction scheme) and to an appropriate nf
(typically 4 or 5) to compare with other experiments.
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Running Coupling Constant

Summary of the values of 
αs(MZ) from various 
processes.  The values 
shown indicate the process 
and the measured value of 
αs extrapolated up to µ = MZ. 
The error shown is the total 
error including theoretical 
uncertainties.
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Running Coupling Constant

Summary of the 
values of αs(Q) at the 
values of Q where 
they are measured.  
The lines show the 
central values and the 
±1σ limits of the PDG 
average.  The figure 
clearly shows the 
decrease in αs with 
increasing Q.
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In this figure µ≡Q
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Running Coupling Constant

Let us consider ( )
( )

hadronse e  

e e
R

+ −

+ − + −

σ →
=

σ →µ µ
An O(αs

2) calculation in the modified minimal subtraction scheme gives

( ) ( ) ( )2

2

2
2 0

1 2, 1 s s
s

QR R C C
µ

⎡ ⎤α α⎛ ⎞′α = + +⎢ ⎥⎜ ⎟π π⎝ ⎠⎢ ⎥⎣ ⎦
( )

( ) ( )

( ) ( )

2

2

0

1

365 2 11
2 2 24 3 12

2 2

3

1
33 2 1 1112

1 1 , 1 1.41

2

2

2

2

2
f

f

f
fQ

Q

  

    n

          n      1.2021 ,     

Q

R e

C
nC C n

b C C

µ
µ

µ

=

=
−⎛ ⎞′ = = + − ς + ς −⎜ ⎟

⎝ ⎠
= π + ς = =

∑where

for nf = 5.  Here ζ is ζ(3), where ( )
1

s

k
s k

∞
−

=

ς =∑
Remember that αs = αs(µ) is the renormalized strong coupling constant.
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Running Coupling Constant

Let us consider the renormalization scale dependence of R at the 
leading order in αs ( ) ( ) ( )2

2
1 0, 1 s

s
QR R
µ

α⎛ ⎞α = +⎜ ⎟π⎝ ⎠At this order in β(x) we have
( ) ( )

( ) 2ln 2
s

s Q
s1

Q
b

µ

α µ
α =

+ α µ
Note that this expression is invariant under Q ↔ µ:

( ) ( )
( )

( ) ( ) ( )( )2 2

2 22

2

21 1 1
1 1

s 2 2
s s s s

s

n n
n

Q Q

Q

Q
Q b Q O b Q

b Q µ µµ

α ⎡ ⎤α µ = = α + α + α⎢ ⎥⎣ ⎦+ α

We can therefore write
( ) ( ) ( ) ( ) ( )2 2

2 2
1 0, 1 1s 2 2

s s nQ QQ bR R Q
µ µ

⎡ ⎤α
α = + + α +⎢ ⎥π π⎣ ⎦

where the higher terms are of order ( ) 2

2
2 3 1 2

s n Qb Q
µ

α
Notice that the µ dependence occurs at order αs

2(Q).
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Running Coupling Constant

We therefore verify the renormalization group formalism result
( ) ( ) ( ) ( )( )2

2
1 1, 1,s s

QR R Q
µ

α = α
Looking at the next-to-leading order is instructive.  We have

( ) ( ) ( )

( ) ( ) ( )

2

2

2

2

2
2 0

2

2
0

2

, 1

1 1

s s
s

s 2 s
s n

Q

Q

R R C

Q bR Q C

µ

µ

⎛ ⎞α α⎛ ⎞′α = + +⎜ ⎟⎜ ⎟⎜ ⎟π π⎝ ⎠⎝ ⎠
⎡ ⎤α α⎛ ⎞′= + + α + +⎢ ⎥⎜ ⎟π π π⎝ ⎠⎢ ⎥⎣ ⎦

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

2 2

2 2

2 2

22

2 2

2

3
2

1 1 1 1

1 1 1

2 ss
s

s2
s s

n n

n n

Q
Q

Q Qb

Q
C b C O b Q

Q
Q C O b Q

µ
µ

π µ µ

⎛ ⎞αα⎛ ⎞ ⎡ ⎤⎡ ⎤′ = π + + α⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦π π ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞α

= − α + + α⎜ ⎟π⎝ ⎠

But
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Running Coupling Constant

Therefore ( ) ( ) ( ) ( ) ( ) ( )2

2

2
2 0

2, 1 1s s
s

Q Q Q
R R C

µ

⎛ ⎞⎛ ⎞α α
⎜ ⎟α = + + +⎜ ⎟π π⎜ ⎟⎝ ⎠⎝ ⎠

where the other terms are of order ( ) ( )2 2

2 21 13 3 2
s sandn    nQ Qb Q b Q

µ µ
α α

Again we see that the µ dependence is at higher order in αs(Q). 

( ) ( ) ( ) ( )( )2

2
2 2, 1,s s

QR R Q
µ

α = α

S
te

rli
ng

, F
er

m
ila

b-
C

on
f-9

0/
16

4-
T,

 p
22

.

As expected, the 
renormalization scale 
dependence is smaller at 
higher order in αs. ( )GeVµ

We also verify that

( ) ( )
( )

2

2
1,2

0

,
1 %

s
 

QR

R
µ

α
−
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Running Coupling Constant

A calculation to next-to-next-to-leading order gives (P.D.G.)

( )( ) ( ) ( ) ( ) ( )2 3
03

1 2 31, 1 s s s
s

Q Q Q
R Q R C C C

⎡ ⎤⎛ ⎞ ⎛ ⎞α α α
⎢ ⎥α = + + +⎜ ⎟ ⎜ ⎟π π π⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

where

( )
( ) 8.121

41.11
1

33

22

1

−==
==

=

CC
CC

C

With all available data in 20 < Q < 65 GeV one obtains

( )35 0.146 0.03s  GeVQα = = ±
If the third order is not included, the result is 0.142 ± 0.03 which 
indicates that the theoretical uncertainty is smaller than the 
experimental error.
Evolving  this result to Q = MZ using  the expression for αs(Q) obtained 
to leading log order with 5 quark flavours (neglecting all other mass 
effects), we get 0.125.
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