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Spin and Colour
 From deep inelastic scattering, we found evidence for

the fractional charge assignment of quarks;
the spin j = s = 1/2 nature of quarks;
gluons;
asymptotic freedom (Bjorken scaling);
confinement (no quarks observed in isolation).

Using the static quark model, all baryons are described as bound states 
of 3 quarks, but baryon wave functions violates Pauli exclusion principle 
(spin-statistics theorem), e.g. the mj = 3/2 states

( ) ( ) ( )- -uuu         ddd         sss++∆ ∆ Ω
All 3 quarks have same spin projection and same wave function, which 
implies a symmetric global wave function.  This is not allowed for a 
fermion. We can solve the problem by introducing colour as an extra 
degree of freedom

( ) ( ) ( )3 1
1 2 3 1 2 3 1 2 32 2, , , , ,zJ r r r m m m c c c−Ω

Ψ = = Φ = = = χ
G G G=

where Φ is a totally symmetric space-spin function of the 3 quarks, and χ
is a totally antisymmetric colour function of the three quarks.
At least 3 distinct colours are needed here.
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Spin and Colour
From e+ e-→ hadrons, there is evidence for 3 different colours of quarks 
(Factor of 3 in R).
The quark model without colour predicts an infinity of multiquark states 
not observed in nature, e.g. states with 1,2,4,5,7,… quarks. But adding 
an extra degree of freedom (colour) increases the number of multiquark
linearly independent states… This must be controlled.
QCD does it with colour confinement.

First, let’s look at spin.  
Consider a spin s = 1/2 particle A

2
1 1

1 22 2
1

m m mα α
α=

= η = =−∑A ,    ,   

The norm
2

2

1
1α

α=

η =∑ is left invariant by the transformation
ˆ ˆA AU U⎯⎯→

Therefore †ˆ ˆ U U I=
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Spin and Colour

Setting ˆm U m Uα β αβ= we get ( )2† det 1U U I U= ⇒ =   
We choose det 1U = so U is a 2 × 2 (special) unitary matrix.  Then

ˆˆ Um U U Uα αβ β α αβ β= η η ⎯⎯→ ηA          
Let’s now consider the possible states |J, Jz〉 resulting from the 
combination of 2 spin 1/2 particles.  Using CG coefficients, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2 1 21 1 1 1 1
2 2 2 21 2 2 11 2 1 22

1 2 1 1
2 21 1 1 2

1 2 1 21 1 1 1 1
2 2 2 21 2 2 11 2 1 22

1 2 1 1
2 22 2 1 2

0,0

1,1

1,0

1, 1

− −

− −

− −

⎡ ⎤= η η −η η⎣ ⎦
= η η

⎡ ⎤= η η +η η⎣ ⎦
− = η η

Projecting onto the |mα〉1 |mβ〉2 space we can write
( ) ( ) ( ) ( )1 2 1 21

00 1 2 2 12
⎡ ⎤Ψ = η η −η η⎣ ⎦
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Spin and Colour

If we apply U to both particles, we obtain
( ) ( ) ( ) ( )

( ) ( )

[ ] ( ) ( ) ( ) ( )

[ ] ( )

ˆ 1 2 1 21
00 1 2 2 12

1 21
1 2 2 12

1 2 1 21
11 22 21 12 1 2 2 12

11 22 21 12 00 00

00

det

U U U U U

U U U U

U U U U
U U U U U

α α β β α α β β

α β α β α β

⎡ ⎤Ψ ⎯⎯→ η η − η η⎣ ⎦
⎡ ⎤= − η η⎣ ⎦

⎡ ⎤= − η η −η η⎣ ⎦
= − Ψ = Ψ
= Ψ

We see that the spin singlet Ψ00 is invariant under U as expected.   
Members of the spin triplet mix amongst themselves under U.
Note that 

( )
( )

0 0
0 0

z

z

J J
J J
= ⇒ =
= ⇒ =/

spin singlet 

but spin singlet 
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Spin and Colour

Now let’s look at colour.
We assume there are 3 possible colour states 1,2,3,  =jc j
often called red, green, blue.  Therefore the general colour states of a 
quark is 3

1
 q j j

j
c c

=

= ∑

The norm
3 2

1
1j

j
c

=

=∑ is left invariant by the transformation

q q
� �U U⎯ →⎯

Therefore †ˆ ˆ U U I=
Setting we get ( )2† det 1 U U I U= ⇒ =ˆ

j k jkc U c U=

We choose det 1U = so U is a 3 × 3 (special) unitary matrix.  Then
ˆˆ q        U

j jk k j jk kc U U c c U c= ⎯⎯→
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Spin and Colour

We must seek multiquark states that are invariant under U, that is 
colour singlets.  For 3 quark states, the state with this property is

( ) ( ) ( )1 2 31
1 36 2ijk i j k i j kc c c c c c= εB

Projecting onto the |ci〉1|cj〉2|ck〉3 space we can write
( ) ( ) ( )1 2 31

6B ijk i j kc c cΨ = ε

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ 1 2 31
6

1 2 31
6

det det
B

B

B

U
ijk ia a jb b kc c

abc a b c

U c U c U c

U c c c U

Ψ ⎯⎯→ ε

= ε = Ψ
= Ψ

If we apply U to each three quarks, we obtain

where we have used detabc ijk ia jb kcU U U Uε = ε
We see that ΨB is invariant under U.  It is a colour singlet.  None of 
the other 26 colour combinations are singlets.
ΨB is a suitable wavefunction for baryons.
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Spin and Colour

For quark-antiquark states, we need the anticolour vector
3 3

1 1
q           q j j j j

j j
c c c c∗

= =

= =∑ ∑
Consider

(1) (2) (1) (2) (1) (2)1
1 1 1 1 2 2 2 2 3 3 3 31 2 1 2 1 23

c c c c c c c c c c c c∗ ∗ ∗⎡ ⎤= + +⎣ ⎦M
or, projecting onto the |cj〉1|ck〉2 space

(1) (2) (1) (2) (1) (2)1
1 1 2 2 3 33

c c c c c c∗ ∗ ∗⎡ ⎤Ψ = + +⎣ ⎦M

which is invariant under U.  It is a colour singlet.
ΨM is a suitable wavefunction for mesons.
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Spin and Colour

 In fact,
ΨB is the only invariant qqq state;
ΨM is the only invariant quark-antiquark state;
The only other invariant multiquark states contain 3,6,9,… 

quarks and an arbitrary number of quark-antiquark pairs.

 All observed hadrons are colour singlets

There are no long range confinement forces between colour singlets, 
e.g. pn can be separated.  The nuclear force is a “Van der Waals” 
colour (strong) force.

Leptons and photons are colour singlets, so they don’t feel the strong 
force.  They are not made of colour objects either, so they don’t feel 
the nuclear force.
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Notes on SU(n)
The commutation relation [ ] 21, 2, ..., 1,            a b abc c a nt t if t = −=
forms the Lie algebra of SU(n), where fabc are the structure constants
of the group.  The ta are the generators of the group.  An element u of 
the group is then a ai tu e ω=
where the ωa are real parameters that label the group element u.  By 
convention, we will assume sum over repeated group generator indices.
Consider the representation ( )u U u U→ =
If there exist a non-singular matrix M, independent of the group 
elements, such that

( )
( )

( )
1

1
2

0 0
0 0
0 0

     SU( )
U u

MU u M U u u n−
⎛ ⎞
⎜ ⎟= ∀ ∈
⎜ ⎟
⎝ ⎠%

then U is called a reducible representation.
( ) ( ) ( )1 2  U u U u U u= ⊕ ⊕ "

Otherwise it is an irreducible representation.  In this case a ai TU e ω=

PHYS506B, spring 2005 Introduction to Gauge Theories 11



Notes on SU(n)
From †U U I= †T T=

det 1U = 0TrT =
we get 

From we get 

Therefore the generators representation Ta are n2 –1 hermitian traceless 
matrices.  They follow the SU(n) algebra

[ ],a b abc cT T if T=

( ) ( ) ( )1 2 1 2 U u U u U u u= ( ) ( ) ( )1 2 1 2 U u U u U u u∗ ∗ ∗=Since implies 
we see that U* forms a complex conjugate representation.  This implies 
that -Ta* forms a representation of the generators.
If there exist a non-singular matrix S such that

1      a aST S T a− ∗= − ∀
then Ta and -Ta* are said to be equivalent. In this case the representation 
is said to be a real representation.
The dimension d of a representation is the dimension of the vector space 
on which it acts.
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Notes on SU(n)
For d = n we have the defining or fundamental representation denoted n.  
In this case the generators are n × n traceless hermitian matrices. There 
are n2 – 1 of them, which sets the number of ωa parameters needed to 
specify a group element.
In the fundamental representation, SU(n) is the group of all unitary n × n
matrices of unit determinant.
Remember the properties of commutator algebra

[ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

1 2 2 1

1 2 3 1 3 2 3

1 2 3 3 1 2 2 3 1

, ,
, , ,

, , , , , , 0

T T T T
aT bT T a T T b T T
T T T T T T T T T

= −
+ = +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0abd cde cad bde bcd adef f f f f f+ + =
From the Jacobi identity we get

Therefore the matrices Ta defined by
( )a abcbc
T if= −

also satisfy the algebra of the group.  They generate the adjoint
representation of dimension d = n2 –1.

PHYS506B, spring 2005 Introduction to Gauge Theories 13



Notes on SU(n)
Choosing the normalisation ( )Tr a b abT T = κδ
the structure constants fabc are totally antisymmetric in all three indices.
Of the n2 – 1 generators, only n – 1 are diagonal.  They commute with 
one another, and their (real) eigenvalues are used to label group 
elements of an irreducible representation.
An irreducible representation (multiplet) of dimension d is denoted d, 
though this does not generally uniquely label it.
Consider an infinitesimal SU(n) transformation on a generator

† 1          a a b bT UT U U i T→ = + ω

a a aT T T→ + δ a abc b cT f Tδ = ωWe obtain where

Any set of n2 – 1 quantities that transform under SU(n) like Ta can be 
denoted ( )21 2 1

, , ,
n

T T T T
−

≡
G

…
We can indeed define the following products

( )                abc b c a aa
S T f S T S T S T× = ⋅ =
G GG G
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Notes on SU(n)
Using the antisymmetry of fabc we get the identity

( ) ( )R S T R T S× ⋅ = − × ⋅
G GG G G G

from which we can show that is indeed a SU(n) scalarS T⋅
G G

( ) ( ) ( ) 0S T S T S T S T S Tδ ⋅ = δ ⋅ + ⋅δ = ω× ⋅ + ⋅ ω× =
G G G G GG G G G GG G

Therefore we can write 2 1
2 2

1

n

a
a

T T T T kI
−

=

≡ ⋅ = =∑
G G

In general

Tr TrT T kda
a

n
2 2

1

12

= =
=

−

∑
where d is the dimension of the representation. 
For U in SU(n), we can have

†
b aT UT U=

2 † † 2Tr Tr Trb a a aT UT U UT U T⎡ ⎤= =⎣ ⎦Then
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Notes on SU(n)
Let’s choose a = α corresponding  to one of the n – 1 diagonal 
generators.  Then

( )22 2

1
Tr Tr

d

a i
i

T T tα α
=

= =∑ where ( )itα are the eigenvalues of Tα

Therefore ( ) ( )
2 1

22 2 2

1 1
1Tr Tr

n d

a i
a i

T T n t kd
−

α
= =

= = − =∑ ∑
Finally we obtain the important result

( ) ( )
2

22

1

1 d

i
i

n
T T T t Id α

=

−
≡ ⋅ = ∑
G G

We also note that the normalization condition can be written as

( ) ( )2

1
Tr

d

a b ab ab i
i

T T tα
=

= κδ = δ ∑
where ( )itα are the eigenvalues of Tα , any one of the n – 1 

diagonal generators
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Notes on SU(2)
In SU(2) there are n2 – 1 = 3 generators.   In the fundamental 
representation, we choose the Pauli matrices σa

1
2 1,2,3  , a a aT == σ ( ) ( ) ( )1 2

0 1 0 1 0
1 0 0 0 13        i

i
−σ = σ = σ = −

They have the normalization
( ) 1

2Tr a b abT T = δ
and they verify the Lie algebra

[ ],a b abc cT T i T= ε
where εabc is totally antisymmetric with ε123 = 1. 
Note that T3 is the only (n – 1 = 1) diagonal generator.  Its eigenvalues
t3 label each state of a multiplet. 

1 2T T iT± ≡ ± [ ]3,T T T± ±= ±we obtain 

3 3 raises  by 1                 lowers  by 1  T t T t+ −

Setting therefore 
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Notes on SU(2)

The action of T± can be represented by
3t

T− T+

Each irreducible representation of SU(2) is characterized by an integer p
which corresponds to a multiplet of dimension d

0,1, 2, 1            p d p= = +…
We can represent graphically the irreducible SU(2) multiplet by states on 
the t3 axis

11
23t0

0p =
1

1p =
2

2p =
3

3t 3t

Note that Ta→ −Ta* does not change the spectrum of states.  Indeed, 
there exist a S such that 1      a aST S T a− ∗= − ∀

This can be verified in 2 with 1
2 22S T= = σ

In general this change implies t3 → −t3.  We see that

and  are equivalent∗d d
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Notes on SU(2)

Remember that in general
( ) ( )

2
22

1

1 d

i
i

n
T T T t Id α

=

−
≡ ⋅ = ∑
G G

where Tα is diagonal with eigenvalues ( )itα
In the case of SU(2) we have

( ) ( )
( ) ( ) ( )

2 3
1

2 22 3 31 1
2 2 2 4

2 2 22 3
3

0 0

1 0 1 2

 :  
 :  

 :  

T I

T I I

T I I

= =
⎡ ⎤= − + =⎣ ⎦
⎡ ⎤= − + + =⎣ ⎦

1

2

3

This is the familiar

( )2 31
2 21 0, ,1, , 2,         J j j j= + = …
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Notes on SU(2)

The product of irreducible representation can also be performed 
graphically

⊗ = ⊕2 2 3 1

⊗ =
= ⊕

⊗ = ⊕2 4 5 3

⊗ =

= ⊕
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Notes on SU(3)
In SU(3) there are n2 – 1 = 8 generators.   In the fundamental 
representation, we choose the Gell-Mann matrices λa

1
2 1,2, ,8      a a aT == λ …

1 2 3

4 5

6 7 8

0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0
0 0 0 0 0 0 1 0 010 0 1 0 0 0 1 0

30 1 0 0 0 0 0 2

        

    

        

i
i

i

i

i
i

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ = λ = λ = −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟λ = λ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ = λ = − λ =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

They have the normalization

( ) 1
2Tr a b abT T = δ
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Notes on SU(3)

and they verify the Lie algebra [ ],a b abc cT T if T=

where fabc is totally antisymmetric with nonvanishing elements
3

123 458 678 2
1

147 156 246 257 345 367 2

1                    
   

f f f
f f f f f f

= = =
= − = = = = − =

There are n – 1 = 2 diagonal generators.  They commute, so [ ]3 8, 0T T =
Their eigenvalues t3 and t8 are used to label each states of a multiplet.  
We can define

1 2 6 7 4 5              T T iT U T iT V T iT± ± ±≡ ± ≡ ± ≡ ±
Note that when considering flavour SU(3), it is useful to define

2
83

Y T≡

Also note that T1, T2 and T3 form an SU(2) sub-algebra.  Therefore
1, 2, 3, , for     abc abcf a b c= ε ∈
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Notes on SU(3)

We obtain the following commutation relations
[ ]
[ ]
[ ]

3
1

3 2
1

3 2

,
,
,

T T T
T U U
T V V

± ±

± ±

± ±

= ±
=
= ±
∓

[ ]
[ ]
[ ]

8
3

8 2
3

8 2

, 0
,
,

T T
T U U
T V V

±

± ±

± ±

=
= ±
= ±

3 8

3 8

3 8

3 8

3 8

3 8

31
2 2

31
2 2

31
2 2

31
2 2

raises by and does not affect
lowers by and does not affect

lowers by and raises by

raises by and lowers by

raises by and raises by

lowers by and lowers by

1
1

T t t
T t t
U t t
U t t
V t t
V t t

+

−

+

−

+

−

Therefore we have 

8t

3t

V+

V− U−

U+

T+T−

3
2

1

The action of T±, U± and V± can be represented as

PHYS506B, spring 2005 Introduction to Gauge Theories 23



Notes on SU(3)

Each irreducible representation of SU(3) can be characterized by a set 
of two integers (p, q) which correspond to a multiplet of dimension d. 

( )( ) ( )( )1
2

0,1, 2,
0,1, 2,
1 1 1

p
q
d p q p q

=
=
= + + + +

…

…

  
0 1 2 3 4

 
5 6 7

0 1 3 6 10 15 21 28 36
1  8 15′ 24 35 48 
2  27 42 60  
3  64 90  
4  125  

 

 

p
q
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Notes on SU(3)
Graphically, the irreducible SU(3) multiplets show up as states in the 
t3 – t8 plane.  The boundaries are hexagons of sides p and q, which 
collapses into triangles if p or q vanishes.

p

pp
q

q q
3t

8t

( ),p q

8t

3t

( ) ( ), 0,p q q=

q

qq

8t

3t

( ) ( ), ,0p q p=

p

p

p
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Notes on SU(3)
Starting from a (p, q) boundary containing 3(p+q) sites, the 
representation can be graphically obtained with the following rules:

the boundary sites are singly occupied;
the next inward layer is doubly occupied;
the next inward layer is triply occupied, etc;
a triangle shaped (or a dot) layer is reached;
the next layers have the same occupancy as the previous one.

If you did it right the resulting number of states will be
( )( ) ( )( )1

21 1 1d p q p q= + + + +
Here are the first 3 smallest irreducible representations

8t

3t

( ) ( ), 0,0p q =
1

( ) ( ), 1,0p q =
3

1
3

−

1
2 3

8t

3t

( ) ( ), 0,1p q
∗

=
3

1
3

8t

3t
Notice that the 
triangles for the 
fundamendal
representations
are equilateral.



Notes on SU(3)
Here are three more examples:

8t

3t

( ) ( ), 1,1p q =
8

1

3
2

8t

3t

( ) ( ), 3,0p q =
10

1

3
2

3−
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Notes on SU(3)
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8t

3t

( ) ( ), 5,1p q =
48

11
2 3

−

7
2 3

Note that each state can 
be labeled by t3, t8 and d′, 
where d′ is the dimension 
of the sub-multiplet of the 
SU(2) sub-algebra.



Notes on SU(3)
Note that d* is equivalent to d only if p = q.  In particular

and    are not equivalent  ∗3 3

Remember that in general
( ) ( )

2
22

1

1 d

i
i

n
T T T t Id α

=

−
≡ ⋅ = ∑
G G

where Tα is diagonal with eigenvalues ( )itα
Either t3 or t8 can be used, as shown in the following example:

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 8
1

2 222 8 1 1 4
3 2 2 3

2 2 2
8 1 1 1 4
3 32 3 3 2 3

2 222 8 1 1 4
3 2 2 3

2 2 2
8 1 1 1 4
3 32 3 3 2 3

0 0

0

0

    
    

   

T I

T I I

I I

T I I

I I

∗

= =
⎡ ⎤= − + + =⎣ ⎦
⎡ ⎤= + − + =⎢ ⎥⎣ ⎦
⎡ ⎤= − + + =⎣ ⎦
⎡ ⎤= − + + − =⎢ ⎥⎣ ⎦

1

3

3
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Notes on SU(3)
The product of irreducible representations can also be done graphically.  
For example,

∗⊗ = ⊕3 3 3 6

⊗ =

= ⊕
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Notes on SU(3)
We find the following results

∗

∗

∗ ∗

⊗ = ⊕
⊗ = ⊕
⊗ ⊗ = ⊕ ⊕ ⊕

′⊗ ⊗ ⊗ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

3 3 3 6
3 3 1 8
3 3 3 1 8 8 10
3 3 3 3 3 3 3 6 6 15 15 15 15

and so on.  It is remarkable that among the low-lying configurations of 
quarks, only quark-antiquark and qqq can belong to a colour singlet!

All hadron states and physical observables are colour singlets
It turns out that SU(3) is the only (compact semi-simple) Lie group 
that satisfies the following requirements:

because there are 3 colours, a quark must be represented by a 
triplet and

quark and antiquark states are different;
quark-antiquark and qqq can be singlets;
qq and qqqq cannot be singlets.
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Colour Factors
We have seen that a quark is a colour SU(3) triplet 3:

3 3 2

1 1
1 1q               q qj j j

j j
c c c

= =

= = ⇒ =∑ ∑
In matrix notation we have

1 2 3

1 1

2

3

1 0 0
0 1 0
0 0 1

2

3

red blue green

red
blue

green

            

R
q B

G

c c c

c c
c c c

c c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= → = → = →
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ = = ⋅ ≡
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Also, an antiquark is a colour SU(3) triplet 3*

1 13
* *

2 2
1

3 3

anti-red
anti-blue

anti-green

R
q      q  B

G

* *

* *
j j

* *j

c c
c c c c c

c c=

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅
⎜ ⎟⎜ ⎟ ⎜ ⎟= → = = ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑
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Colour Factors

In order to carry the colour force, gluons carry colour and anticolour

blue

red
red, anti-blue

colour conservation at vertex

So in principle there are 9 possible colour-anticolour combinations.  We 
can therefore have the following gluon multiplets

*⊗ = ⊕3 3 1 8
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“If the gluon singlet existed, it could appear as a free particle.  It would 
carry a long range force which would couple to baryons, approximately 
proportional to mass.  No extra contribution to gravity has been found 
by experiment.”  This often heard argument is hokey...
Gluons are in the octet multiplet.  As we will see later, gauge invariance 
predicts gluons to be of the adjoint representation of SU(3), which is the 
octet multiplet.   Like quarks, they cannot then be observed as free 
particle: 8

1
g ga a

a
z

=

= ∑



Colour Factors

In matrix notation
1

2
1 2

8

1 0
0 1
0 0

0 0

etc.g      g         g

z
zz

z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟→ → → = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

## #

We can built each gluon octet 
members in the colour basis

†1
2

ga ac c→ λ which yields

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1
1 52 2

1
2 2 2

1
3 2 2

1 1
4 2 6

2

6

7

8

g RB BR      g RG GR

g RB BR      g BG GB

g RR BB      g BG GB

g RG GR     g RR BB GG

i

i

i

−

−

−

= + = −

= − = +

= − = −

= + = + −

Since gluons carry colour, they will interact with one another, unlike 
photons that do not.
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Colour Factors

The strength of the electromagnetic force between 
charged particles is governed by the coupling 
constant α, or the fundamental electric charge ge = e : 2 4eg = πα

Likewise, the strength of the chromodynamic, or strong, force 
between colour charged particles is governed by the strong 
coupling constant αs, or the fundamental colour charge gs : 2 4s sg = πα

Heaviside-Lorentz
system

We now state the Feynman rules for tree-level diagrams in QCD:
External lines:

incoming quark
outgoing quark
incoming antiquark
outgoing antiquark

incoming gluon

outgoing gluon

( ),u p s c
( ) †,u p s c
( ) †,v p s c
( ),v p s c

,a µ

,a µ
( ) ap zµε

( ) *
ap z∗

µε
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Colour Factors
Propagators:

quark-antiquark

gluon

( )
2 2

i q m
q m

+/
−

2
v abig

q
µ− δ,a µ ,b v

Vertices:
quark-gluon

three-gluon

four-gluon

1
2s aig µ− λ γ

,a µ

,b v
2k

3k ,c λ

1k
( ) ( ) ( )1 2 2 3 3 1s abc v vg f g k k g k k g k kµ λ λµλ µ ν

⎡ ⎤− − + − + −⎣ ⎦

( )
( )
( )

2
s abe cde

ace bde v v

ade cbe v v

ig f f g g g g

f f g g g g

f f g g g g

µλ νρ µρ νλ

µ λρ λ µρ

µλ ρ ρλ µ

⎡− −⎣
+ −

⎤+ − ⎦

,b v ,c λ

,a µ
,d ρ

,a µ



Colour Factors
Consider the q1q2 = ud QCD interaction  

( )1 1 1, ,u p s c ( ) †
3 3 3, ,u p s c

,a µ
q
,b v

( )2 2 2, ,u p s c ( ) †
4 4 4, ,u p s c

1 2 3 4

1 3 4 2

p p p p
q p p p p
+ = +
= − = −

( ) ( ) ( ) ( )† †1 1
3 1 4 22 223 1 4 2v ab v

s a s b

ig
i u c ig u c u c ig u c

q
µµ − δ⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− = − λ γ − λ γ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎣ ⎦

M

( ) ( ) ( ) ( )2
2

3 1 4 2
s

 
F

u u u u
g C

q

µ
µ⎡ ⎤ ⎡ ⎤γ γ⎣ ⎦⎣ ⎦= −M

where we have the colour factor  † †1 1
1 4 22 23F a aC c c c c⎡ ⎤ ⎡ ⎤= λ λ⎣ ⎦ ⎣ ⎦
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Colour Factors
Comparing with the QED result for e- µ- scattering we infer the following 
strong potential energy (in the non-relativistic limit)

( )
2

4
s s

s F F
gV r C Cr r

α
= =

π
Since in the electromagnetic case we have

( )
2

1 2 1 2 4
e gV r Q Q Q Qr r

α= =
π

we see that the colour factor is like the “product of the colour charges” of 
the two quarks.  The colour factor depends in which colour multiplet is 
the incoming quark pair.  Let’s use the notation

( ) ( )
( ) ( )

1 2 2

3 2 4 4

: 1, , : 2, ,
: 3, : 4, ,

1 1 2

1 3

in in

out out

q              q     
q    ,         q   
 

p c p c
p c p c

then
1 2 2 21 1

1,2 1 2 j k j k jk j k
jk jk

c c c c c c= = = β∑ ∑
where the βjk are the Clebsch-Gordan coefficients for SU(3) needed 
to build a given multiplet.
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Colour Factors
Now,

3 4 2 21 1
3,4 3 4 j k j k jk j k

jk jk
c c c c c c= = = β∑ ∑

Since the incoming and outgoing quark pairs are necessarily in the 
same multiplet, we have used 1 2 3 4j k j kc c c c=

Therefore 21, 2 1, 2 3, 4 3, 4 1 1jk
jk

= = ⇒ β =∑
1, 2 3, 4 1=implies

Now consider the total colour operator

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21, 2 3,4 1 3 2 4              T T T T T T T T T= ≡ = ≡ = ≡
G G G G G G G G G

( ) ( )

( )( ) ( )( ) ( ) ( )

1 2

2 21 2 1 22 2

T T T

T T T T T

= +

= + + ⋅

G G G

G G
Then

therefore ( ) ( )1 2T T⋅
G G

is proportional to I.
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Colour Factors
Now,

( )( ) ( )( ) ( ) ( )2 21 2 1 22 23, 4 1, 2 2 3 1 4 2T T T T T T= = + + ⋅
G G

but ( ) ( ) ( )1 1* * 1
3 1 3 1 21

† 1
12

3 1

3

a j k j a k j k a jk
jk jk

a

T c c c T c I c c

Ic c

= = λ

= λ

∑ ∑

Likewise ( )2 † 1
4 224 2a aT Ic c= λ

( ) ( ) ( ) ( )

( )( ) ( )( )
1 2 1 2 † †1 1

3 1 4 22 2
2 21 221

2

3, 4 1, 2  

 

a a

F

T T T T I c c c c

IC T T T

⎡ ⎤ ⎡ ⎤⋅ = ⋅ = λ λ⎣ ⎦ ⎣ ⎦
⎡ ⎤= = − −⎢ ⎥⎣ ⎦

G G G G
Therefore we obtain

Since each quark is in the colour triplet 3 state, we have
( )( ) ( )( ) ( )

2 21 2 2 4
3T T T I= = =3
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Colour Factors
The possible multiplets for the quark pair is given by *⊗ = ⊕3 3 3 6
In the triplet 3* case, we have 2 4

3T I=
Therefore ( ) 1 4 4 4 2

2 3 3 3 3FC ∗ = − − =−⎡ ⎤⎣ ⎦3

In the sextet 6 case, we have
Therefore 

2 10
3T I=

( ) 101 4 4 1
2 3 3 3 3FC = − − =⎡ ⎤⎣ ⎦6

We conclude that in the triplet state the quarks attract each other, while 
they repel each other in the sextet state.  Neither state can be observed 
free in nature, but pairs of quarks occur in baryons, which are singlet 
totally antisymmetric states.  This means that pairs of quarks in baryons 
must be in an antisymmetric state, which is the case when they are in 
the triplet state, ie when they attract each other!  This is not a proof, but 
we see that the colour potential is favorable for binding when 3 quarks 
are in a singlet configuration.
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Colour Factors
Similarly we can consider the

( )1 1 1, ,u p s c ( ) †
3 3 3, ,u p s c

,a µ
q
,b v

( ) †
2 2 2, ,v p s c ( )4 4 4, ,v p s c

1 2 3 4

1 3 4 2

p p p p
q p p p p
+ = +
= − = −

( ) ( ) ( ) ( )† †1 1
3 1 2 42 223 1 2 4v vv ab v

s a s b

ig
i u c ig u c c ig c

q
µµ − δ⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− = − λ γ − λ γ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎣ ⎦

M

( ) ( ) ( ) ( )2
2

3 1 2 4
s

 v v
F

u u
g C

q

µ
µ⎡ ⎤ ⎡ ⎤γ γ⎣ ⎦⎣ ⎦= −M

where we have the colour factor  † †1 1
1 2 42 23F a aC c c c c⎡ ⎤ ⎡ ⎤= λ λ⎣ ⎦ ⎣ ⎦

QCD interaction  qq ud=
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Colour Factors
Comparing with the QED result for e- µ+ scattering we infer the following 
strong potential energy (in the non-relativistic limit)

( )
2

4
s s

s F F
gV r C Cr r

α
= − = −

π
The negative sign comes from the fact that the vertex (both in QED and 
QCD) does not carry the sign of the charge (electric or colour).

Again, the colour factor depends in which colour multiplet is the 
incoming quark pair.  Let’s use the notation

( ) ( )
( ) ( )

1 2 2

3 2 4 4

: 1, , : 2, ,
: 3, : 4, ,

1 1 2

1 3

in in

out out

q              q     
q    ,         q   
 

p c p c
p c p c

*
1 2 2 21 1

*
3 4 2 21 1

1,2 1 2

3,4 3 4

j k j k jk j k
jk jk

j k j k jk j k
jk jk

c c c c c c

c c c c c c

= = = β

= = = β

∑ ∑
∑ ∑

then
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Colour Factors
To obtain the colour factor in terms of the total colour operator, we 
proceed as for the quark-quark case, but care is needed when dealing 
with the anticolour basis representation of the SU(3) generators. 
As before, for the quark triplet 3 we obtain

( )1 † 1
123 1 3a aT Ic c= λ

But for the antiquark triplet 3* we must use the generators of the 
complex conjugate representation

( ) ( ) ( )2 2 * *1
4 2 4 2 22

4 2a j k j a k j k a jk
jk jk

T c c c T c I c c∗= = − λ∑ ∑
But † * T

a a a aλ = λ ⇒ λ = λ
( ) ( )2 †1 1

4 2 2 42 24 2a j k a akj
jk

T I c c Ic c∗=− λ =− λ∑therefore

so we finally obtain
( ) ( ) ( )

( )( ) ( )( )
1 2 1 2 † †1 1

3 1 2 42 2
2 21 22

3, 4 1, 2

1
2

 

                

a a

F

T T T T I c c c c

IC T T T

⎡ ⎤ ⎡ ⎤⋅ = ⋅ = − λ λ⎣ ⎦ ⎣ ⎦
⎡ ⎤= − = − −⎢ ⎥⎣ ⎦

G G G G
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Colour Factors
The quark is in the triplet 3 state, and the antiquark in the triplet 3* state

( )( ) ( ) ( )( ) ( )2 21 22 2 *4 4
3 3             T T I T T I= = = =3 3

The possible multiplets for the q-qbar pair is given by ∗⊗ = ⊕3 3 1 8
In the singlet 1 case, we have T2 = 0: ( ) 1 4 4 4

2 3 3 30FC =− − − =⎡ ⎤⎣ ⎦1
In the singlet 8 case, we have T2 = 3I: ( ) 1 4 4 1

2 3 3 63FC =− − − =−⎡ ⎤⎣ ⎦8
We conclude that the force is attractive in the colour singlet case, but 
repulsive for the octet.
Again, this is not a proof, but it shows that the colour potential is 
favorable for binding a quark and an antiquark in the colour singlet 
configuration (which corresponds to colour singlet mesons found in 
nature).  It is not favorable to the existence of coloured mesons.
We notice that the strong potential energy operator can be written as

( ) ( ) ( )1 2ˆ s
s V r T T r

α
= ⋅
G G both for the quark-quark and quark-antiquark

interactions.  This is the analogue of the spin-
spin interaction, or the isospin-isospin
interaction.
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