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General Formalism
In 1954 Yang and Mills extended the gauge principle to non-abelian
symmetry.  We will develop the general formalism necessary to build 
SU(n) gauge invariant field theories.
Consider a representation of SU(n) of dimension d.  Consider then a 
complex scalar d-plet

1

2

d

ϕ⎛ ⎞
⎜ ⎟ϕϕ = ⎜ ⎟
⎜ ⎟⎜ ⎟ϕ⎝ ⎠

and the corresponding free Lagrangian density

( ) ( )† 2 †
0 mµ

µ= ∂ ϕ ∂ ϕ − ϕ ϕL
which is invariant under Poincaré transformations.

Note that L 0 produces a Klein-Gordon equation for each of the d
complex components of the d-plet ϕ.  Each d-plet component is 
associated to the same mass.
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General Formalism

This Lagrangian density is also invariant under the global SU(n) phase 
transformation

( )
0

0 exp

a

a a

U
U iT

ε ′ϕ⎯⎯→ϕ = ϕ
= − ε

where U0 is an element of SU(n), and εa are real constants.  Sum over 
repeated group generators indices is assumed.  Remember that there 
are n2 – 1 generators Ta of SU(n);  they are hermitian and traceless 
matrices, here of dimension d, and follow the SU(n) algebra

,a b abc cT T if T⎡ ⎤ =⎣ ⎦
where fabc are the structure constants of SU(n), totally antisymmetric in 
all three indices.
Consider the local SU(n) phase transformation

( )

( )( )exp

a x

a a

U
U iT x

ε ′ϕ⎯⎯⎯→ϕ = ϕ
= − ε

where the εa are now real functions of x. We wish to impose local SU(n) 
phase, or SU(n) gauge, invariance to the theory.
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General Formalism

We seek a differentiation operator Dµ such that
( ) 1a xD D UD Uε −

µ µ µ′⎯⎯⎯→ =
which means

( ) ( ) ( ) ( ) ( )1a xD D D UD U U U Dε −
µ µ µ µ µ

′
′ ′ϕ ⎯⎯⎯→ ϕ = ϕ = ϕ = ϕ

In this case the term ( ) ( )†
D Dµ

µϕ ϕ

is invariant under SU(n) gauge transformations.  Dµ is called the 
covariant derivative for SU(n).  We try

a aD igT Aµ µ µ= ∂ +
where g is a real constant, and Aµ

a(x) are n2 – 1 real gauge fields.  The 
transformation of Aµ

a under local SU(n) is defined by
( )a xa a

a a

A A
D igT A

ε
µ µ

µ µ µ

′⎯⎯⎯→
′ ′≡ ∂ +
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General Formalism

Therefore ( )D U Dµ µ′ ′ϕ = ϕ

becomes ( ) ( )
( ) ( )

( ) ( )

a a a a

a a a a

a a a a

igT A U U igT A

U igT A U U igUT A

U U ig A T U A UT

µ µ µ µ

µ µ µ µ

µ µ µ µ

′∂ + ϕ = ∂ + ϕ

′∂ + ϕ = ∂ + ϕ

′∂ − ∂ ϕ = − − ϕ
but

( ) ( ) ( )
( )a a

U U U U U U U U

iT U
µ µ µ µ µ µ µ µ

µ

∂ − ∂ ϕ = ∂ ϕ− ∂ ϕ = ∂ ϕ+ ∂ ϕ− ∂ ϕ = ∂ ϕ

= − ∂ ε ϕ

so ( ) ( )1a a a a a aT U g A T A UT U U−
µ µ µ′∂ ε ϕ = − ϕ

We finally obtain
1 1a a a a a aA T A UT U Tg
−

µ µ µ′ = + ∂ ε

Setting Ta ≡ 1 we obtain the local U(1) case 1A A gµ µ µ′ = + ∂ ε
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General Formalism

To obtain the antisymmetric second rank tensor of the gauge field 
needed to build the gauge field dynamic term, we consider

, a aD D igT Fµ ν µν⎡ ⎤ ϕ ≡ + ϕ⎣ ⎦
Therefore Fµν

a(x) are antisymmetric tensors by construction.  Now

( )
( )
( ){ } ( )

2

, , , ,

,
, 0

, ,

, ,

a a a a

a a b b

a a a a a a a

a a a

a a a a a a

a a b b a b a

D D ig T A ig T A

g T A T A

T A T A T A A

T A A

T A A A T A

T A T A A A T

µ ν µ ν µ ν ν µ

µ ν

µ ν

µ ν µ ν µ ν ν µ

µ ν ν µ

µ ν ν µ ν µ µ ν

µ ν µ ν

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ϕ = ∂ ∂ ϕ+ ∂ ϕ− ∂ ϕ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤− ϕ⎣ ⎦

⎡ ⎤∂ ∂ ϕ =⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ϕ = ∂ ϕ = ∂ − ∂ ϕ⎣ ⎦ ⎣ ⎦

= ∂ ϕ− ∂ ϕ

= ∂ ϕ+ ∂ ϕ− ∂ ϕ = ∂ ϕ

⎡ ⎤ϕ =⎣ ⎦
b a b abc c b c abc aT A A if T A A if Tµ ν µ ν⎡ ⎤ ϕ = ϕ = ϕ⎣ ⎦
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General Formalism

Therefore ( )
( )

2, a a a b c abc a

a a a abc b c

a a

D D igT A A ig A A f T

igT A A gf A A
igT F

µ ν µ ν ν µ µ ν

µ ν ν µ µ ν

µν

⎡ ⎤⎡ ⎤ ϕ = ∂ − ∂ − ϕ⎣ ⎦ ⎣ ⎦
= ∂ − ∂ − ϕ

≡ ϕ
We finally obtain a a abc b c

a a a

F A gf A A
A A A
µν µν µ ν

µν µ ν ν µ

= −
≡ ∂ − ∂

Setting Ta ≡ 1 and fabc ≡ 0 we obtain the local U(1) case F A Aµν µ ν ν µ= ∂ − ∂
We notice that [Dµ, Dν] transforms as Dµ under local SU(n)

( ) ( ) 1 1

1

, , , ,

,

a xD D D D D D UD U UD U

U D D U

ε − −
µ ν µ ν µ ν µ ν

−
µ ν

′
′ ′ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎯⎯⎯→ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦

( ) ( ) ( ), , , ,
a xD D D D D D U D Dε

µ ν µ ν µ ν µ ν

′ ′
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ϕ⎯⎯⎯→ ϕ = ϕ = ϕ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Therefore
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General Formalism

The transformation properties of Fµν
a under local SU(n) are defined by

( )

( ),

a xa a

a a

F F

D D igT F

ε
µν µν

µ ν µν

′⎯⎯⎯→
′

′⎡ ⎤ ≡⎣ ⎦

( ), ,D D U D Dµ ν µ ν

′
′⎡ ⎤ ⎡ ⎤ϕ = ϕ⎣ ⎦ ⎣ ⎦

1a a a aigT F U igUT F U U−
µν µν′ ϕ = ϕ

1a a a aF T F UT U −
µν µν′ =

Therefore

becomes

Finally

Setting Ta ≡ 1 and fabc ≡ 0 we obtain the local U(1) case F Fµν µν′ =
Note that with the case of SU(n) gauge symmetry, Fµν

a does not 
transform trivially.  We therefore need to verify if Fµν

a Faµν is invariant or 
not.
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General Formalism

Consider the quantity ( )( )a a b bT F T F µν
µν

Under local SU(n) it transforms as

( )( ) ( ) ( )( )a xa a b b a a b bT F T F T F T Fεµν µν
µν µν′ ′⎯⎯⎯→

( )( ) ( )( )
( )( )

1 1

1

a a b b a a b b

a a b b

T F T F UT U F UT U F

U T F T F U

µν − − µν
µν µν

µν −
µν

′ ′ =

=
Therefore

( )( )Tr a a b bT F T F µν
µν

⎡ ⎤
⎣ ⎦

is invariant under SU(n) gauge transformations.  We know that

( )( ) ( )Tr Tra a b b a b a b a b ab a aT F T F F F T T F F F Fµν µν µν µν
µν µν µν µν

⎡ ⎤ = = κδ = κ⎣ ⎦
Therefore a aF F µν

µν

is invariant under SU(n) gauge transformations.
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General Formalism

Using the notation ( ) ( )

       

a a

a a

a a

x x T
A A T

F F T F F
µ µ

µν µν µν νµ

ε ≡ ε
≡
≡ = −

where a a abc b c

a a a

F A gf A A
A A A
µν µν µ ν

µν µ ν ν µ

= −
≡ ∂ − ∂

we summarize the results as follows:

( )( )

( )

( ) ( )
( )

1 1

1

exp

x

x
g

x

U i x
D igA

U
A A UA U x

F F UF U

µ µ µ
ε

ε −
µ µ µ µ

ε −
µν µν µν

= − ε
≡ ∂ +

′ϕ⎯⎯⎯→ϕ = ϕ
′⎯⎯⎯→ = + ∂ ε

′⎯⎯⎯→ =
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General Formalism

We can therefore build a pure gauge field Lagrangian density that is 
invariant under Poincaré transformations and under SU(n) gauge 
transformations 1 1

4 4 A Tra aF F F Fµν µν
µν µνκ

⎡ ⎤= − = − ⎣ ⎦L

After some algebra, the Euler-Lagrange equations yield

0a abc b cF gf A Fµν µν
µ µ∂ − =

1
2

a aF Fµν µνρσ
ρσ≡ ε

0a abc b cF gf A Fµν µν
µ µ∂ − =

Note that with

we also have, using the Jacobi identity,

, ,b c b c abc a b cA F A F T T if T A Fµν µν µν
µ µ µ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

0

0

,

,

F ig A F

F ig A F

µν µν
µ µ

µν µν
µ µ

⎡ ⎤∂ + =⎣ ⎦
⎡ ⎤∂ + =⎣ ⎦

Since

We obtain
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General Formalism

We can therefore extend the covariant derivative definition to gauge 
fields

when acting on a fundamental representation field

when acting on a gauge field
   ,     

igA
D

ig A

µ µ
µ

µ µ

⎧∂ +⎪≡ ⎨ ⎡ ⎤∂ +⎪ ⎣ ⎦⎩
The gauge fields equations of motion then take the compact form

0 0        D F D Fµν µν
µ µ= =

Because of the non-abelian nature of SU(n), the gauge fields interact 
with themselves: 1

4
21 1 1

4 2 4

 A                         a a

a a abc a b c abc ars b c r s

F F
A A gf A A A g f f A A A A

µν
µν

µν µ ν µ ν
µν µν µ ν

= −
= − + −

L

Notice the cubic and quartic terms in Aµ
a, which correspond to self-

couplings of non-abelian gauge fields.  From
0        a a a

A AF j jµν ν ν
µ ν∂ ≡ ∂ =

we obtain the conserved current

2

a abc b c abc b c crs r s
A

abc b c abc rsc b r s

j gf A F gf A A gf A A
gf A A g f f A A A

ν µν µν µ ν
µ µ

µν µ ν
µ µ

⎡ ⎤= = −⎣ ⎦
= −
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General Formalism

The corresponding vertices and Feynman rules can be directly obtained 
from 

2a a abc a b c abc rsc a b r s
Aj A gf A A A g f f A A A Aµ µν µ ν

µ µ ν µ ν= − +

vb, 2k
3k λ,c

1kµ,a

( )
( )
( )

1 2

2 3

3 1

        

        

abc
v

v

gf g k k
g k k

g k k

µ λ

λ µ

λµ ν

⎡− −⎣
+ −

⎤+ − ⎦

vb, λ,c

µ,a ρ,d

( )
( )
( )

2

     

     

abe cde

ace bde
v v

ade cbe
v v

ig f f g g g g

f f g g g g

f f g g g g

µλ νρ µρ νλ

µ λρ λ µρ

µλ ρ ρλ µ

⎡− −⎣
+ −

⎤+ − ⎦
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Scalar SU(n) Dynamics
Consider the Lagrangian density for scalar local SU(n) dynamics

( ) ( ) 2 1
4

† † a aD D m F Fµ µν
µ µν= ϕ ϕ − ϕ ϕ −L

where

          

a a

a a abc b c a a a

D igT A
F A gf A A A A A

µ µ µ

µν µν µ ν µν µ ν ν µ

= ∂ +
= − = ∂ − ∂

which is invariant under Poincaré transformations and under the SU(n) 
gauge transformations

( )

( )

( )

1 1

1

a

a

a

x

xa a a a a a a a
g

xa a a a a a

U
A T A T A UT U T

F T F T F UT U

ε

ε −
µ µ µ µ

ε −
µν µν µν

′ϕ⎯⎯⎯→ϕ = ϕ
′⎯⎯⎯→ = + ∂ ε

′⎯⎯⎯→ =

where ( )( )exp         ,a a a b abc cU iT x T T if T⎡ ⎤= − ε =⎣ ⎦
Remember that ϕ is a complex scalar d-plet.  
The Ta are in a dimension d representation of SU(n).
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Scalar SU(n) Dynamics

We can write

( ) ( ) 2
0

† †
 mµ

µ= ∂ ϕ ∂ ϕ − ϕ ϕL
0  A  int= +L L L +L

where

The pure gauge field Lagrangian density is as before
1
4

21 1 1
4 2 4

 A
a a

a a abc a b c abc ars b c r s

F F
A A gf A A A g f f A A A A

µν
µν

µν µ ν µ ν
µν µν µ ν

= −
= − + −

L

Notice the cubic and quartic terms in Aµ
a, which correspond to self-

couplings of non-abelian gauge fields.
The interaction term between the complex scalar d-plet ϕ and the n2 – 1 
gauge fields Aµ

a is governed by

( ) ( ) 21
2

†† †
 int ,a a a a b a big T T A g A A T Tµ µ µ

µ µ +

⎡ ⎤ ⎡ ⎤= − ϕ ∂ ϕ − ∂ ϕ ϕ + ϕ ϕ⎣ ⎦⎢ ⎥⎣ ⎦
L

This interaction term is a consequence of the SU(n) gauge invariance. 
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Scalar SU(n) Dynamics

From requiring

( ) ( )0 SU naa
D F j

AA
µν ν

µ µ
νµ ν

⎛ ⎞∂ ∂⎜ ⎟∂ − = ⇒ =
⎜ ⎟ ∂∂ ∂⎝ ⎠

L L

we obtain

( ) ( ) ( ) 2†† † int
SU ,a a a b a b

n aj ig T T g A T T
A

µ µ µ µ

+
µ

∂ ⎡ ⎤ ⎡ ⎤= − = ϕ ∂ ϕ − ∂ ϕ ϕ − ϕ ϕ⎣ ⎦⎢ ⎥⎣ ⎦∂
L

The corresponding vertices and Feynman rules can be directly obtained 
from

( )SU
a a

nj Aµ
µ

k ′k

µ,a µ,a ν,b

k ′k

( )aigT k kµ µ′− − 2 ,a big g T Tµν +
⎡ ⎤⎣ ⎦
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SU(n) Dynamics
The formalism can be easily adapted to fermions.
Consider the Dirac spinor d-plet ψ

( )
1

2
1 2 3 4where  , , ,            j

k

d

k =

⎛ ⎞ψ
⎜ ⎟ψ⎜ ⎟ψ = ψ
⎜ ⎟
⎜ ⎟ψ⎝ ⎠

where each ψj is a Dirac spinor with 4 spinor components.  This means 
that, for example,

( )

1

2

0 1 0 2 0 0† † † †

d

d

µ

µ
µ

µ

⎛ ⎞γ ψ
⎜ ⎟γ ψ⎜ ⎟γ ψ =
⎜ ⎟
⎜ ⎟γ ψ⎝ ⎠

ψ ≡ ψ γ = ψ γ ψ γ ψ γ
There are therefore two matrix spaces that don’t interfere. 
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SU(n) Dynamics
Under a SU(n) gauge transformation we have

( ) ( ) ( ) ( )a xD D U Dε
µ µ µ

′
ψ ⎯⎯⎯→ ψ = ψ

Then the terms are gauge invariant.  ,  Dµψψ ψ ψ

( ) 1
4

a ai D m F Fµ µν
µ µν= ψ γ − ψ −L

a a

a a abc b c

a a a

D igT A
F A gf A A
A A A

µ µ µ

µν µν µ ν

µν µ ν ν µ

= ∂ +
= −
= ∂ − ∂

where

which is invariant under Poincaré transformations and under the SU(n) 
gauge transformations

( )

( )

( )

1

1

1

a

a

a

x

xa a a a a a a a

xa a a a a a

U

A T A T A UT U T
g

F T F T F UT U

ε

ε −
µ µ µ µ

ε −
µν µν µν

′ψ⎯⎯⎯→ψ = ψ

′⎯⎯⎯→ = + ∂ ε

′⎯⎯⎯→ =

Consider the Lagrangian density for local SU(n) dynamics
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SU(n) Dynamics
where ( )( ) andexp         ,a a a b abc cU iT x T T if T⎡ ⎤= − ε =⎣ ⎦
Remember that ψ is a Dirac spinor d-plet and that the Ta are in a 
dimension d representation of SU(n).
We can write 0  A  int= + +L L L L

( )0 i mµ
µ= ψ γ ∂ − ψLwhere

yields d Dirac equations for each one of the ψ d-plet components.   They 
are all associated to the same mass.  The pure gauge field Lagrangian
density is, as before

1
4

21 1 1
4 2 4

 A
a a

a a abc a b c abc ars b c r s

F F
A A gf A A A g f f A A A A

µν
µν

µν µ ν µ ν
µν µν µ ν

= −
= − + −

L

Notice the cubic and quartic terms in Aµ
a, which correspond to self-

couplings of non-abelian gauge fields.
The interaction term between the Dirac spinor d-plet ψ and the n2 – 1 
gauge fields Aµ

a is governed by
 int

a ag T Aµ
µ= − ψγ ψL

This interaction term is a consequence of the SU(n) gauge invariance.
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SU(n) Dynamics
From requiring

we obtain
( )

 int
SU
a a

n aj g T
A

µ µ

µ

∂
= − = ψγ ψ

∂
L

( ) ( )0 SU naa
D F j

AA
µν ν

µ µ
νµ ν

⎛ ⎞∂ ∂⎜ ⎟∂ − = ⇒ =
⎜ ⎟ ∂∂ ∂⎝ ⎠

L L

The corresponding vertex and Feynman rule can be directly 
obtained from

( )SU
a a

nj Aµ
µ

µ,a

aigT µ− γ
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Chromodynamics
Consider the SU(3) dynamics, or chromodynamics.  We can then 
consider the triplet of quarks 1

2

3

red

blue

green

⎛ ⎞ ⎛ ⎞ψ ψ
⎜ ⎟ ⎜ ⎟ψ = ψ = ψ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ψ ψ⎝ ⎠ ⎝ ⎠

We therefore use the fundamental representation of SU(3) of dimension 
d = n = 3 with the n2 – 1 = 8 group generators

1 1 1 1
2 2 2 21 2 8, ,...,               , ,a a a b abc caT if= ⎡ ⎤= λ λ λ = λ⎣ ⎦

where  λa are the Gell-Mann matrices.  Remember the SU(3) group 
structure constants 3

123 458 678 2
1

147 156 246 257 345 367 2

1            
  

f f f
f f f f f f

= = =
= − = = = = − =

The 8 gauge fields Aµ
a(x) are the gluon fields.

Since quantum chromodynamics is the theory of the strong interaction, 
we use g = gs.
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Chromodynamics
The Lagrangian density for chromodynamics is then

( ) 1
04   A  int

a ai D m F Fµ µν
µ µν= ψ γ − ψ − = + +L L L L

where we have
pure quarks

( )0 i mµ
µ= ψ γ ∂ − ψL where colours do not mix

pure gluons
1
4

21 1 1
4 2 4

 A

s s

a a

a a abc a b c abc ars b c r s

F F
A A g f A A A g f f A A A A

µν
µν

µν µ ν µ ν
µν µν µ ν

= −
= − + −

L

where the non-abelian nature of SU(3) leads to self-couplings 
between gluons.

quark-gluon interaction
1
2 int s

a ag Aµ
µ= − ψγ λ ψL

which is a consequence of gauge invariance.
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Non-Abelian Higgs Model
The Higgs model can be extended to non-abelian theories.  For the 
simplest case, consider the complex scalar doublet

1

2

ϕ⎛ ⎞ϕ = ⎜ ⎟ϕ⎝ ⎠
and consider the Lagrangian density

( ) ( ) ( )1
4

† a aD D F Fµ µν
µ µν= ϕ ϕ − − ϕL V

where 

( ) ( )

1
2

22 0† †      

a a

a a abc b c

a a a

D ig A
F A g A A
A A A

µ µ µ

µν µν µ ν

µν µ ν ν µ

= ∂ + σ
= − ε
= ∂ − ∂

ϕ = −µ ϕ ϕ + λ ϕ ϕ λ >V

The 3 Pauli matrices follow the SU(2) algebra

1 1 1 1 1 1
2 2 2 2 2 2,           ,a b abc c a b abi⎡ ⎤ ⎡ ⎤σ σ = ε σ σ σ = δ⎣ ⎦ ⎣ ⎦+
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Non-Abelian Higgs Model
This Lagrangian density is invariant under Poincaré transformation and 
under the SU(2) gauge transformations

( )

( )

( )

1

1

1

a

a

a

x

xa a a a a a a a

xa a a a a a

U

A A A U U
g

F F F U U

ε

ε −
µ µ µ µ

ε −
µν µν µν

′ϕ⎯⎯⎯→ϕ = ϕ

′σ ⎯⎯⎯→ σ = σ + σ ∂ ε

′σ ⎯⎯⎯→ σ = σ
where ( )( )1

2exp a aU i x= − σ ε

is a member of the SU(2) group.
To insure Poincaré invariance, Aµ

a must vanish for the equilibrium state.  
Therefore, the equilibrium state corresponds to V (ϕ)min.
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Non-Abelian Higgs Model
As for the abelian theory, we have two cases:
a) µ2 < 0
Then ( ) 1 1 2 2 1 20 0 0†

min
∗ ∗ϕ = ⇒ ϕ ϕ = ϕ ϕ + ϕ ϕ = ⇒ ϕ = ϕ =V
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and no symmetry hiding occurs.  The Lagrangian density becomes that 
of scalar SU(2) dynamics with an extra quartic self interaction term

( ) ( ) ( )22 1
4

† † †a aD D m F Fµ µν
µ µν= ϕ ϕ − ϕ ϕ − − λ ϕ ϕL

where m2 = - µ2 is the mass associated to the complex scalar doublet ϕ.
b) µ2 > 0
Then ( )

2
2 21 1

0 04 2 0
2

† † 2
min

v vµϕ = − µ ⇒ ϕ ϕ = ϕ ϕ = = >
λ

V

The equilibrium state is degenerate and can be characterised by 

ϕ01

θ3

ϕ02 v
2

1 201
0 01 01 02 02

02

2 202 21
3 01 02 2

01

              

tan            v

i ie eθ θϕ⎛ ⎞ϕ = ϕ = ϕ ϕ = ϕ⎜ ⎟ϕ⎝ ⎠
ϕ

= θ ϕ + ϕ =
ϕ



Non-Abelian Higgs Model
Nature spontaneously chooses one equilibrium point, say

1
1 2 02

2

0
0 3               v

⎛ ⎞
θ = θ = θ = π ϕ = ⎜ ⎟⎜ ⎟

⎝ ⎠
which is always possible since the theory is also globally SU(2) invariant.  
With ( ) ( ) ( )

( ) ( ) ( )
1

1 1 22
1

2 32

x x i x
x x i x

′ ⎡ ⎤ϕ = η + η⎣ ⎦
′ ⎡ ⎤ϕ = σ + η⎣ ⎦

where σ and ηj are real functions of x, we can write

( ) ( ) ( )
( )

( ) ( )
( ) ( )

1 1 21
0 2

2 32
v v

x x i x
x x

x x i x
′⎛ ⎞ϕ ⎛ ⎞η + η

′ϕ = ϕ + ϕ = =⎜ ⎟ ⎜ ⎟⎜ ⎟′+ ϕ + σ + η⎝ ⎠⎝ ⎠

1 21 1
2

32

i
i

′ η + ηϕ ⎛ ⎞⎛ ⎞′ϕ = =⎜ ⎟ ⎜ ⎟′ σ + ηϕ⎝ ⎠ ⎝ ⎠

So ϕ′(x), and hence σ(x) and ηj(x) , measures the deviation of ϕ(x) from 
equilibrium.  With

3
2

3
2

a a A A
A

A A

−
µ µ

µ +
µ µ

⎛ ⎞
σ = ⎜ ⎟⎜ ⎟−⎝ ⎠

( ) ( )
( ) ( )

1 21
2

1
1 22

        

          

A A iA A A

i

∗± − +
µ µ µ µ µ

∗± − +

≡ ± =

η ≡ η ± η η = η
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Non-Abelian Higgs Model
and after some effort we obtain

( )( ) ( )( )
( )

( )

3
2 21 1

2 2
1

21 1 1
4 2 2

31
32

 int

v
v

j j
j

a a a aF F g A A
ig A A iA

µ µ
µ µ

=

µν µ
µν µ

+ µ + − µ − µ
µ µ µ

= ∂ σ ∂ σ − µ σ + ∂ η ∂ η

− +

− ∂ η − ∂ η − ∂ η
′+

∑L

L
where L  ′int contains terms cubic and quartic in the fields σ, ηj and Aµ

a.  
An insignificant constant has been discarded. We can interpret

21
2

2real Klein-Gordon field   mσ → = µ
but the interpretation

1
2

real Klein-Gordon fields    

real Proca fields               

0 
gv

j
a

A

m
A M

η

µ

η → =
→ =

is not possible because of the quadratic terms
( )31

32 vig A A iA+ µ + − µ − µ
µ µ µ− ∂ η − ∂ η − ∂ η
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Non-Abelian Higgs Model
The ηj fields are the would-be-Goldstone boson fields.  They are 
unphysical and can be eliminated through a SU(2) gauge transformation 
yielding the form

( ) ( )
1
2

0
vx x
⎛ ⎞

ϕ = ⎜ ⎟+ σ⎝ ⎠
This is called the unitary gauge.  In this gauge, the Lagrangian density 
becomes

( )( ) ( )
( )

22 21 1 1 1
2 4 2 2

3 4 2 21 1
4 8 2

int

 int

v

v v

a a a a

a a

F F g A A

g A A

µ µν µ
µ µν µ

µ
µ

= ∂ σ ∂ σ − µ σ − + +

= −λ σ − λσ + σ + σ

L L

L

Since L int contains no quadratic terms in the fields we can interpret
21

2
1
2

2real Klein-Gordon field   

real Proca fields               va
A

m
A M gµ

σ → = µ
→ =
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Non-Abelian Higgs Model
We can verify the number of degrees of freedom

n.d.f
complex doublet 4

Initially:  10
real massless 6

real massive 1
After   :  10

real massive 9

                                          
    

      

         
        

a

a

A

A

µ

µ

⎫ϕ →⎧
→⎨ ⎬→⎩ ⎭

⎫σ →⎧
→⎨ ⎬→⎩ ⎭

The physical content of the theory is independent of the gauge. 
Therefore our theory contains 10 physical degrees of freedom.
The massless would-be-Goldstone boson fields ηj have disappeared 
from the theory, and have allowed the gauge fields Aµ

a to acquire mass.
The massive scalar field σ is a Higgs boson field.
Note that gauge invariance has also given us the way the Higgs boson 
field self couples and the way it couples to the massive Aµ

a.
In general, after symmetry hiding, the number of massive Higgs bosons, 
the number of massive gauge fields, and the number of remaining 
massless gauge fields depend on the pattern of symmetry hiding.
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