Introduction to Gauge Theories

B Basics of SU(n)

B Classical Fields

B U(1) Gauge Invariance
B SU(nh) Gauge Invariance
B The Standard Model

PHYS506B, spring 2005 Introduction to Gauge Theories

Michel Lefebvre
University of Victoria
Physics and Astronomy

121



SU(n) Gauge Invariance

B General Formalism

W Scalar SU(n) Dynamics

B SU(n) Dynamics

B Chromodynamics

B Non-Abelian Higgs Model

PHYS506B, spring 2005 Introduction to Gauge Theories 122



B General Formalism

In 1954 Yang and Mills extended the gauge principle to non-abelian
symmetry. We will develop the general formalism necessary to build
SU(n) gauge invariant field theories.

Consider a representation of SU(n) of dimension d. Consider then a
complex scalar d-plet /(p \
1

p=|

\Pa
and the corresponding free Lagrangian density
f 2t
7,=(0,9) (0"9)-m’e'e
which is invariant under Poincaré transformations.

Note that %, produces a Klein-Gordon equation for each of the d
complex components of the d-plet ¢. Each d-plet component is
associated to the same mass.
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M General Formalism

This Lagrangian density is also invariant under the global SU(n) phase
transformation p—E ¢ = UNG

U, = exp(-iT%")
where U, is an element of SU(n), and &2 are real constants. Sum over
repeated group generators indices is assumed. Remember that there

are n>— 1 generators T2 of SU(n); they are hermitian and traceless
matrices, here of dimension d, and follow the SU(n) algebra

|:-|-a -I-b:| _if abc-I-c
where fab¢ gre the structure constants of SU(n), totally antisymmetric in

all three indices.
Consider the local SU(n) phase transformation

o— ¢ =Ug

U =exp(-iT (X))
where the &2 are now real functions of x. We wish to impose local SU(n)
phase, or SU(n) gauge, invariance to the theory.
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M General Formalism

We seek a differentiation operator D* such that
D,— %D =UDU™

w

which means ,
(D.0)—"-(D,p) =Di¢'=(UDU *)Up=U(D,0)
In this case the term ( DM(p)T ( D“(p)

IS invariant under SU(n) gauge transformations. D* is called the
covariant derivative for SU(n). We try

D, =0, +igT* A’

where g is a real constant, and A ?(x) are n® — 1 real gauge fields. The
transformation of A 2 under local SU(n) is defined by

a_ 2() | pra
A > A,

D! =4, +igT *A®
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B General Formalism

Therefore D.¢'=U (Du(p)

becomes ((’3u + igTaA:a)U(p =U (8M - igTaAf)(P

(0,U +igT*AU Jo=(Ud, +igUT Al )¢
(6,U-U0d,)o=—ig(ATU -AUT?)g

but

(6,U-Ud,)e=0Up-Ud,0=(0,U)e+Ud,0-Ud,0=(8,U )
=—iT" (@“Sa)U(p

e T* (0,67 )Uo=g(AT* —AUTU)Ug

We finally obtain

Setting T2 = 1 we obtain the local U(1) case A{l = A, -I—%@HS
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M General Formalism

To obtain the antisymmetric second rank tensor of the gauge field
needed to build the gauge field dynamic term, we consider

'D,.D, |o=+igT*Fi¢

Therefore F, #(x) are antisymmetric tensors by construction. Now

[Du’ DV](L):[@M,@V](p-l-ig [aM,TaAC‘](P_ig [aV’TaA\ﬂ(P

0,00, |o
10, T°A |o=T"

D

Ao+ A0,0- A0 =T (0,A ) o
[Ta'A\jin'AVb:'(P:'A\jA\? [Ta;Tb](P:Aj'Aybif abCTC(I):/A{:AVCif abc-l-a(p
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B General Formalism
Therefore [DM,D] [IgT ( 'AM) ing?'AVCfabCTa](p
=igT*(0,A! -0,A! - gf “AA )0

We finally obtain

Setting T2 = 1 and fa*°= 0 we obtain the local U(1) case F, =0, A -0 A

We notice that [D,, D,] transforms as D, under local SU(n)
D,.D, |—"([D,.D,]) =[D;.D; ]=[UDU*,UDU ]
=U|D,,D, U™

Therefore

[Du’ Dv}q) = >([DM’ Dv}q))’ :([Du’ DV])I ¢'=U [Du’ Dv}q)
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B General Formalism
The transformation properties of F, # under local SU(n) are defined by

a £ (x) ra
F. >FL

/

([D..D.]) =igT°F

/

Therefore ([Dw Dv:|) (p':U |:Du’ DV](P
becomes igT*F/2U ¢ = igUT*F2U U
Finally

raT a a a1 -1
FWT :FWUT U

Setting T2 = 1 and fabc= 0 we obtain the local U(1) case FH’V = Fuv

Note that with the case of SU(n) gauge symmetry, F 2 does not

transform trivially. We therefore need to verify if F, 2 F2 is invariant or
not.
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B General Formalism
Consider the quantity (T‘FJ‘FMaV )(Tbe“V)
Under local SU(n) it transforms as
(TR )(T°F™ ) === (TR (T°F™)
(TR )(TOF™) = (UTU R, )(UT U R )
=U (T*F3 )(T°F™ U™
Tr|(ToF)(T°F™)]
IS invariant under SU(n) gauge transformations. We know that
Tr|(ToR2)(TPF™) |= FAF™ Tr(ToT®) = FAF™15% = kFAF ™
Therefore F:i o
IS invariant under SU(n) gauge transformations.

Therefore
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B General Formalism
Using the notation S(X) =¢° (X)T 2

A= AT

F,=FT* F, =-F

pv v
where F2 =A% —df abCA{l’AC
Ay =0,A —0,A

we summarize the results as follows:
U =exp(-ig(x))

D, = (8)“ +10A,

P >o'=Uo
5 A =UAU ™ +10 ¢(x)

W _F =UF U
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M General Formalism

We can therefore build a pure gauge field Lagrangian density that is
invariant under Poincaré transformations and under SU(n) gauge

transformations _ _lpapaw _ _ 1 uv
Py =—L1F2F _—KTr[FWF ]
After some algebra, the Euler-Lagrange equations yield

auv abc Abpcuv
0,F* —gf ™ AF* =0

Note that with I’:”auv _ % HVPo Fpe;

we also have, using the Jacobi identity,

= apv abc pAb = cuv
0,F* —gf ®*AF™ =0

Since
ALFE = AR T TS | =if T
We obtain wo i T ]
o.F +|g_A“,F _:O
0,F" +ig| A, F* |=0
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B General Formalism

We can therefore extend the covariant derivative definition to gauge

fields
D" =

0" + igAu when acting on a fundamental representation field
o' + ig [A“, :' when acting on a gauge field
The gauge fields equations of motion then take the compact form
DF“=0  DF"=0
Because of the non-abelian nature of SU(n), the gauge fields interact
with themselves: _ _lpapaw
Py =—5F,F

1 A pAauv | 1 ~fabc pa pAbupacy 1 2 gabc gars pb aC AR ASY

= —L AT A™ 1+ 1gf AT AMAY — g fCf AP ACATMA
Notice the cubic and quartic terms in A 2, which correspond to self-
couplings of non-abelian gauge fields. From

o,F™=jr  0,jr=0
we obtain the conserved current
j,iv _ gf abc AEFC]JV _ gf abc AE |:Acuv _ gf crs A\ i ASV]
_ gf abCAEAC“V . gZ f abc f rSCA{iAmASV
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M General Formalism

The corresponding vertices and Feynman rules can be directly obtained

from
jZ“AS — _gf abCASAEACuv n g2 f abc f rscASA\t,)AmAsv

N

(_.—3

C,A —gf e [guv (kl B k2 )x
+ gvx (k2 o k3)u

T gk“ (k3 - kl)v:|

_igz[fabefcde(gukgvp _gppg\/}\.)
4 facef bde (guvgkp — nggup)
n fade f che (g ukgPV — gpxgpv ):|
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B Scalar SU(n) Dynamics
Consider the Lagrangian density for scalar local SU(n) dynamics
Y = (Du(p)T ( D“(p) -m’p'@—+FIF™
h _ : apa
where D, =0, +igT*A’
a a abc pAb pcC a a a
Fo = Ay — 0T AA Ay =0, A —0A

which is invariant under Poincaré transformations and under the SU(n)
gauge transformations

o— Y 59’ =Uo
AT L AT = AUTU ™+ 1770 ¢
aTa e’(x) (praTa _ a a | -1
FoT >F, 17 =FUT"U
where U =exp(-iT?% (x)) TATY | =it eT
Remember that ¢ is a complex scalar d-plet.
The T2 are in a dimension d representation of SU(n).
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M Scalar SU(n) Dynamics

We can write ¥ = 59 + L, T+

2
where P, = (8M(P) (8“([))— m’e’o
The pure gauge field Lagrangian density is as before
Ly =—7% FWF"J‘“V

—_ 4AL Aauv fabCATVAb“ACV—%ngabcfarS/A{fACAmAsv

Notice the cubic and quartic terms in A 2, which correspond to self-
couplings of non-abelian gauge fields.

The interaction term between the complex scalar d-plet ¢ and the n?— 1
gauge fields A 2 is governed by

Vo= -io[ 0T (%0)- (¢°0) T*0 &+ 10" A AN [T

This interaction term is a consequence of the SU(n) gauge invariance.
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M Scalar SU(n) Dynamics

From requiring
| i 8(2$AC‘) ) g;? =0=D.F" = s

we obtain W

ISty = %f‘:t Ig[ "(0%0)~(0"0) Tacp} ~g* A% [TT"] o

]:I'he corresponding vertices and Feynman rules can be directly obtained

rom

Jsu( )Aa
§’“ a, L b, v
o’ ke k ‘\k’

-igT*(k, —k/)  ig°g,,[T" ,Tbl
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B SU(n) Dynamics

The formalism can be easily adapted to fermions.

Consider the Dirac spinor d-plet v

(1)
'

2

Y= \V (\yj)k where k =1,2,3,4

d
\V )
where each yl is a Dirac spinor with 4 spinor components. This means
that, for example,

/yuwl\
= 1Y
S
\Tf — nyo _ (wl’ryo szyo \Ide'YO)

There are therefore two matrix spaces that don'’t interfere.
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B SU(n) Dynamics
Under a SU(n) gauge transformation we have
/

e () _
(D,w)—"—=(D,v) =U(D,v)
Then the terms Yy @DM\V are gauge invariant.
Consider the Lagrangian density for local SU(n) dynamics

. - apa
Du = 8H +1gT 'AM
c??:\TJ(iy“D“—m)w—%F“iFa“v where  F2 = Al —gf A'A’
a a a
A, =0, A —0,A
which is invariant under Poincaré transformations and under the SU(n)
gauge transformations

y—" sy =Uy
1

aT a e’ (x)  AraTa _ pa ay -1 a a
AT ATTS = AUT'U 4 0T ¢

Fore 0, pee = FRUTAU

uv
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® SU(n) Dynamics
where U =exp(-iT%"(x)) and |T*T°|=if®T°
Remember that vy is a Dirac spinor d-plet and that the T2 are in a

dimension d representation of SU(n).
We can write =L+, +4

where Ly = \Tl(iy“fiM — m)lr\]j;

yields d Dirac equations for each one of the y d-plet components. They
are all associated to the same mass. The pure gauge field Lagrangian
density is, as before

ogA = _% F:\‘/Fa“\’
\Y b b Y 2 b b \%
=— 1A A +1gf AT AMAY — g f P A ACATA
Notice the cubic and quartic terms in A 2, which correspond to self-
couplings of non-abelian gauge fields.

The interaction term between the Dirac spinor d-plet v and the n2 — 1
gauge fields A 2 is governed by

Ly = —9UYHT WA
This interaction term is a consequence of the SU(n) gauge invariance.
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B SU(n) Dynamics
From requiring

0¥ 0¥ :
0 -——=0=DF" = Jo,
t a(aupg) ON p Su(n)
we obtain . 0. _ ura
su(n) =~ aA—at =gy Ty
0

The corresponding vertex and Feynman rule can be directly
obtained from . .

yap

Jsum A

a, L

—igT %y,
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B Chromodynamics

Consider the SU(3) dynamics, or chromodynamics. We can then
consider the triplet of quarks 1\  /  red

Y Y
2 blue
Y=y =y
3 green
AV A

We therefore use the fundamental representation of SU(3) of dimension
d = n = 3 with the n? — 1 = 8 group generators

T3=1)% |a=12..8 IAT LY =LA

where A2 are the Gell-Mann matrices. Remember the SU(3) group

structure constants ¢ _ 1 f —f_ = 3
123 458 — 678 T 2

= — — — — - _ — 1

f147 - f156 - f246 - f257 - f345 - f367 2

The 8 gauge fields A 2(x) are the gluon fields.

Since quantum chromodynamics is the theory of the strong interaction,
we use g = g..
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B Chromodynamics

The Lagrangian density for chromodynamics is then
Z=y(iy'D,—m)y —iFIF™ =%, + 2, + %,

where we have

pure guarks

L, = \Tj(iy“(?M — m)\p where colours do not mix
pure gluons
_ _lpapaw
L, FWF

4

| ASV Aauv 4 % gs f abc'A\jV Ab},lACV _%932 1: abc f arSAEIA\(:Ar“ASV

— 4

where the non-abelian nature of SU(3) leads to self-couplings
between gluons.

quark-gluon interaction

gint = —gS\ij“ %},a\VAS
which is a consequence of gauge invariance.
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B Non-Abelian Higgs Model

The Higgs model can be extended to non-abelian theories. For the
simplest case, consider the complex scalar doublet

(o

and consider the Lagrangian density
T anv
=(D,9) (D"0)-4FIF™ ~7 (o)

D, =0, +ig;6°A;

R = AL - g AN

A, =0.A -0 A

2

7(0)=-1’¢'o+1(o'9)  A>0

The 3 Pauli matrices follow the SU(2) algebra
[%Ga,%ﬁb] I((_;abcl [%Ga,%ﬁb]+=%8ab
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B Non-Abelian Higgs Model

This Lagrangian density is invariant under Poincaré transformation and
under the SU(2) gauge transformations

o— ¢ =Ugp
a_a &(x) _pra_a _ pa agr-1 . 1 _a a
XY >A’o" =AUc"U -I-EG 0,€
a_a £(x) . rra_a_ a ap 1 -1
FWG > FWG = FWUG U
U = exp(—i%cs‘”‘sa (x))
IS a member of the SU(2) group.

To insure Poincare invariance, A 2 must vanish for the equilibrium state.
Therefore, the equilibrium state corresponds to 7(®) -

where
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B Non-Abelian Higgs Model
As for the abelian theory, we have two cases:
a) u?<0

Then %((P) :OZ>(PT(P:(PI(P1+(PZ(P2 :O:‘(Pl‘:‘(l)z‘:()

and no symmetry hiding occurs. The Lagrangian density becomes that
of scalar SU(2) dynamics with an extra quartic self interaction term

T 2
= (DH(P) (D“(p) mée -+ F2F™ - K((pT(p)
where m? = - u? is the mass associated to the complex scalar doublet ¢.
b) u>>0 2
Then “ﬁ((p)mm Luvi = o' o =0lo, = gk—lvz>0

The equilibrium state is degenerate and can be characterised by

min

Po = [$Olj Por =|Pes] €™ Pop = |Poc|€™ 902 v

02 J2
|(Poz| — tano, |(p01|2 n |(p02|2 _ %VZ \93 :
‘(Pm‘ ®o1
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B Non-Abelian Higgs Model
Nature spontaneously chooses one equilibrium point, say 0
0,=0,=0 0, =37 (POZLVJ

J2
which is always possible since the theory is also globally SU(2) invariant.

With : ’ _
(pl(x):%[nl(x)ﬂnz(x)} (p,:(%):A(nﬁ_lnzj
(p'z(x):%[cs(x)ﬂns(x)} ¢,) Y2\ o+in,

where ¢ and n, are real functions of x, we can write

o oet(x) ) m(x)+iny(x)
?(x) = 9'(x)+ 95 = (%4— P, (X)j RE (v +6(X)+in,(x)
So ¢'(x), and hence o(x) and n;(x) , measures the deviation of ¢(x) from

equilibrium. With N Ly ) A\
N oa)  ATHAEA) A=(A)

aAa: - ) +*
s P ) I A S
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B Non-Abelian Higgs Model
and after some effort we obtain

7 =3(0,0)(0"c)-1’c" + Zg;‘%(@unj (o)
=
—FFAF™ 45 (3ov) ALA

- _ _ = A3
~1igv(A/e'n" — Ao"n —iA%o"n,)
+ L
where 2", contains terms cubic and quartic in the fields o, n;and A 2.
An insignificant constant has been discarded. We can interpret

G — real Klein-Gordon field im? = p°
but the interpretation
n,; — real Klein-Gordon fields m_=0

A} — real Proca fields M, =2=1gv
IS not possible because of the quadratic terms

—%igv(Aj@“W - A0 — iﬁfé“ng)
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B Non-Abelian Higgs Model

The n fields are the would-be-Goldstone boson fields. They are
unphyS|caI and can be eliminated through a SU(2) gauge transformation

yielding the form 0
9(x)= %(v + G(X)j

This is called the unitary gauge. In this gauge, the Lagrangian density
becomes

= %(5MG)(@“G) —pio’ -1 FoF™* + %(% gv)2 AAY + 2,

P =—-\o’ —iic +1 ngaAa“ (ZVG + 62)

Since #,,, contains no quadratic terms in the fields we can interpret
G — real Klein-Gordon field +m?® = p’

A} — real Proca fields M,=1gv
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B Non-Abelian Higgs Model

We can verify the number of degrees of freedorra f
n.d.

(complex ¢ doublet — 4 \

Initially: < > — 10
Y Vreal masslessﬁ{i1 —> 6

J

( -
real massive © — 1

After : < _ 3 > — 10
real massive AM —> 9

J

The physical content of the theory is independent of the gauge.
Therefore our theory contains 10 physical degrees of freedom.

The massless would-be-Goldstone boson fields n; have disappeared
from the theory, and have allowed the gauge fields A 2 to acquire mass.

The massive scalar field o is a Higgs boson field.

Note that gauge invariance has also given us the way the Higgs boson
field self couples and the way it couples to the massive A 2.

In general, after symmetry hiding, the number of massive Higgs bosons,
the number of massive gauge fields, and the number of remaining
massless gauge fields depend on the pattern of symmetry hiding.
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