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Scalar Electrodynamics
For the Klein-Gordon field, we have obtained

( ) ( ) 2
 KG m

∗ µ ∗
µ= ∂ ϕ ∂ ϕ − ϕ ϕL

which is invariant under the global phase transformation
global               ie− εε ′ϕ⎯⎯→ϕ = ϕ

Consider the local U(1) phase, or U(1) gauge, transformation
( ) ( ) local          x i xeε − ε′ϕ⎯⎯⎯→ϕ = ϕ

where ε is now a real function of x.  We wish to impose U(1) gauge 
invariance to the theory.  To obtain a gauge invariant Lagrangian
density, we need to replace the partial derivative ∂µ by a covariant 
derivative Dµ such that

( ) ( )x i xD D e Dε − ε
µ µ µ′ ′ϕ⎯⎯⎯→ ϕ = ϕ

In this case the term
( ) ( )D D

∗ µ
µϕ ϕ

is invariant under a U(1) gauge transformation.
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Scalar Electrodynamics

We try the form D iqAµ µ µ= ∂ +
where q is a real constant, and Aµ(x) is an unknown field.   Imposing

( ) ( )x i xD D e Dε − ε
µ µ µ′ ′ϕ⎯⎯⎯→ ϕ = ϕ

yields the transformation properties of the field
( ) 1x

qA A Aεµ µ µ µ′⎯⎯⎯→ = + ∂ ε
This is precisely the photon field gauge transformation with 

( ) ( )1
qf x x= ε

( )F x A Aµν µ ν ν µ≡ ∂ − ∂From 

we see that 1
4 M F Fµν

µν= −L

does not change if ∂µ is replace by Dµ.
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Scalar Electrodynamics

Combining L KG and L M while replacing ∂µ by Dµ, we obtain the 
Lagrangian density for scalar electrodynamics 

( ) ( ) 2 1
4D D m F F

∗ µ ∗ µν
µ µν= ϕ ϕ − ϕ ϕ−L

which is invariant under Poincaré transformations and under the gauge 
transformations ( ) ( )

( ) 1

x i x

x
q

e
A A A

ε − ε

εµ µ µ µ

′ϕ⎯⎯⎯→ϕ = ϕ
′⎯⎯⎯→ = + ∂ ε

The interaction term between the Klein-Gordon and the Maxwell fields is 
a consequence of this local gauge invariance and is obtained from

KG  M  int= + +L L L L
giving

( ) ( ) 2
 int iq A q A A

∗∗ µ µ µ ∗
µ µ

⎡ ⎤= − ϕ ∂ ϕ − ∂ ϕ ϕ + ϕ ϕ⎢ ⎥⎣ ⎦
L
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Scalar Electrodynamics

Since the Lagrangian density for scalar electrodynamics is scale and 
form invariant under the global phase transformation

global         ie
A A A

− εε

ε
µ µ µ

′ϕ⎯⎯→ϕ = ϕ
′⎯⎯→ =

Noether’s theorem yields the continuity equation for the electromagnetic 
current 0emjµµ∂ =
where jµem is proportional to

( ) ( ) ( ) ( ) 2iqA
∗∗ ∗ µ µ µ ∗

∗
µ µ

∂ ∂ ⎡ ⎤ϕ− ϕ = − ϕ ∂ ϕ − ∂ ϕ ϕ − ϕ ϕ⎢ ⎥⎣ ⎦∂ ∂ ϕ ∂ ∂ ϕ
L L

The electromagnetic current can also be obtained by requiring the Euler-
Lagrange equation for Aµ to yield Maxwell’s equations with a current 

( ) 0 emF jAA
µν ν

µ µ
νµ ν

⎛ ⎞∂ ∂⎜ ⎟∂ − = ⇒ ∂ =
∂⎜ ⎟∂ ∂⎝ ⎠

L L
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Scalar Electrodynamics

Since

( ) ( )
int M           F A AA A

µν

ν νµ ν µ ν

∂∂∂ ∂= = − =
∂ ∂∂ ∂ ∂ ∂

LLL L

we obtain int
emj A
µ

µ

∂
= −

∂
L

from which we easily obtain

( ) ( ) 22emj iq q A
∗µ ∗ µ µ µ ∗⎡ ⎤= ϕ ∂ ϕ − ∂ ϕ ϕ − ϕ ϕ⎢ ⎥⎣ ⎦

We also have the conserved electric charge
0

em emd  Q V j= ∫
Note that in the possible gauge A0 = 0, we have

em KGQ qQ=
where QKG is the Klein-Gordon free field global phase conserved charge. 
Upon quantization, the Maxwell field will represent photons.  The Klein-
Gordon field will represent spin 0 particles of charge q and antiparticles 
of charge -q. 

PHYS506B, spring 2005 Introduction to Gauge Theories 101



Scalar Electrodynamics

The Feynman rules for quantum scalar electrodynamics include the
following vertices

k k′

( )iq k kµ µ′− −

µ

22iq gµν

µ ν

k k′

which can be obtained visually from

( ) ( ) 22emj A q i i A q g A Aµ ∗ µ µ ∗ µ ν ∗
µ µ µν

⎡ ⎤= ϕ ∂ ϕ − ∂ ϕ ϕ − ϕ ϕ⎣ ⎦
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Electrodynamics
For the Dirac field, we have obtained

† 0
 D where      i mµ

µ⎡ ⎤= ψ γ ∂ − ψ ψ ≡ ψ γ⎣ ⎦L

which is invariant under the global phase transformation
global               ie− εε ′ψ⎯⎯→ψ = ψ

Consider the local U(1) phase, or U(1) gauge, transformation
( ) ( ) local          x i xeε − ε′ψ⎯⎯⎯→ψ = ψ

where ε is now a real function of x.  We wish to impose U(1) gauge 
invariance to the theory.  To obtain a gauge invariant Lagrangian
density, we need to replace the partial derivative ∂µ by a covariant 
derivative Dµ such that

( ) ( )x i xD D e Dε − ε
µ µ µ′ ′ψ⎯⎯⎯→ ψ = ψ

In this case the term Dµ µψγ ψ
is invariant under a U(1) gauge transformation.
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Electrodynamics

We try the form D iqAµ µ µ= ∂ +
where q is a real constant, and Aµ(x) is an unknown field.   Imposing

( ) ( )x i xD D e Dε − ε
µ µ µ′ ′ψ⎯⎯⎯→ ψ = ψ

yields the transformation properties of the field Aµ
( ) 1x

qA A Aεµ µ µ µ′⎯⎯⎯→ = + ∂ ε
This is precisely the photon field gauge transformation with

( ) ( )1
qf x x= ε

( )F x A Aµν µ ν ν µ≡ ∂ − ∂

1
4 M F Fµν

µν= −L

From

we see that

does not change if ∂µ is replace by Dµ.
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Electrodynamics
Combining L D and L M while replacing ∂µ by Dµ, we obtain the 
Lagrangian density for electrodynamics

1
4i D m F Fµ µν

µ µν⎡ ⎤= ψ γ − ψ −⎣ ⎦L
which is invariant under Poincaré transformations and under the gauge 
transformations ( ) ( )

( ) 1

x i x

x
q

e
A A A

ε − ε

εµ µ µ µ

′ψ⎯⎯⎯→ψ = ψ
′⎯⎯⎯→ = + ∂ ε

The interaction term between the Dirac and the Maxwell fields is a 
consequence of this gauge invariance and is obtained from

D  M  int= + +L L L L
giving

 int q Aµ
µ= − ψγ ψL
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Electrodynamics
Since the Lagrangian density for electrodynamics is scale and form 
invariant under the global phase transformation

global               ie
A A A

− εε

ε
µ µ µ

′ψ⎯⎯→ψ = ψ
′⎯⎯→ =

Noether’s theorem yields the continuity equation for the electromagnetic 
current 0emjµµ∂ =
where jµem is proportional to

( ) ( ) ( )
4 4

1 1
k k k

k kk k k

i µ

= =µ µ µ

⎡ ⎤∂ ∂ ∂⎢ ψ − ψ ⎥ = ψ = ψγ ψ
∂ ∂ ψ ∂ ∂ ψ ∂ ∂ ψ⎢ ⎥⎣ ⎦

∑ ∑L L L

The electromagnetic current can also be obtained by requiring the 
Euler-Lagrange equation for Aµ to yield Maxwell’s equations with a 
current 

( ) 0 emF jAA
µν ν

µ µ
νµ ν

⎛ ⎞∂ ∂⎜ ⎟∂ − = ⇒ ∂ =
∂⎜ ⎟∂ ∂⎝ ⎠

L L
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Electrodynamics
Since

( ) ( )
int M         F A AA A

µν

ν νµ ν µ ν

∂∂∂ ∂= = − =
∂ ∂∂ ∂ ∂ ∂

LLL L

we obtain

from which we easily obtain

int
emj A
µ

µ

∂
= −

∂
L

emj qµ µ= ψγ ψ

We also have the conserved electric charge
0

em emd  Q V j= ∫
Note that we have

em D em D         j qj Q qQµ µ= =
where jµD and QD are the Dirac free field global phase conserved current 
and charge. Upon quantization, the Maxwell field will represent photons.  
The Dirac field will represent spin 1/2 particles of charge q and 
antiparticles of charge -q. 
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Electrodynamics
The Feynman rules for quantum electrodynamics include the following 
vertex µ

iq µ− γ

which can be obtained visually from

emj A q Aµ µ
µ µ= ψγ ψ

Note that in the case of electrodynamics, we have the convention
q e= −
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Goldstone Model
We have seen with the Proca equation that adding a mass term ad-hoc 
spoils gauge invariance.  This will turn out to be true in general for all 
masses in the Standard Model.   
Since we wish to consider gauge invariance to generate the interaction 
between fields, we require a gauge invariant mechanism to generate 
mass.
This is achieved through hidden symmetry (“spontaneous symmetry 
breaking”).
We will therefore consider models where the equilibrium state is not 
unique.  A choice is made by nature, hiding the invariance of the theory.  
The equilibrium state is then characterized by all fields being null, except 
one ( ) 0

lowest energy
xϕ ≠

Since we require the equilibrium state to be invariant under Poincaré
transformations, ϕ must be a scalar field.
The simplest model exhibiting hidden symmetry is the Goldstone model.
Upon quantization, the equilibrium state becomes the vacuum of the 
theory.
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Goldstone Model

Consider the Lagrangian density

( ) ( ) ( ) ( ) ( )22 0           
∗ µ ∗ ∗

µ= ∂ ϕ ∂ ϕ − ϕ ϕ = −µ ϕ ϕ+ λ ϕ ϕ λ >L V V

which is invariant under 
Poincaré transformations and 
under the global U(1) phase 
transformation

ie− ε′ϕ→ ϕ = ϕ

2
µ
λ

ϕ

( )ϕV 2 0µ <

2 0µ >
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Goldstone Model
We note two cases:
a) µ2 < 0
Then ( )

( ) ( ) ( )
( ) ( )

2

2

0 0

-

0

min

       

m
∗ µ ∗

µ

∗

ϕ = ⇒ ϕ =

= ∂ ϕ ∂ ϕ − ϕ ϕ ϕ

ϕ = λ ϕ ϕ λ >

V

L U

U
where m2 = -µ2 is the mass associated to the complex Klein-
Gordon field.
b) µ2 > 0
Then ( )

2 2 2
2 2

0 04 2
2

min

v v
2

µ µϕ = − ⇒ ϕ = ϕ = ≡ >
λ

V
and a local maximum at |ϕ| = 0.
The equilibrium is then characterised by
Only one point is required.  Nature 
spontaneously chooses one, say

0
v
2

ie θϕ =

00 0v
2

θ = →ϕ = >

This is always possible because of global U(1) phase invariance.
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Goldstone Model
We can then write: ( ) ( ) ( )1

2
vx x i x⎡ ⎤ϕ = + σ + η⎣ ⎦

where σ(x) and η(x) measure the deviation of ϕ(x) from equilibrium.  A bit 
of algebra yields

( )( ) ( )( )
( ) ( )

21 1
2 2

22 2 2 21
4

2
int

 int v

µ µ
µ µ= ∂ σ ∂ σ −µ σ + ∂ η ∂ η +

= −λ σ σ + η − λ σ + η

L L

L

where we have not included a constant term that does not affect the 
theory.  Note that there are no quadratic terms that couple the fields σ(x) 
and η(x) .  
We can then interpret

21
2

0

2real Klein-Gordon field
real Klein-Gordon field

   
     

m
mη

σ → = µ
η→ =
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Goldstone Model

We see that

0
v
2

ϕ =

( )Re ϕ

( )Im ϕ

( ) ( ) ( )( )1
2

vx x i xϕ = + σ + η

( )
( )

0

0

radial displacement from

tangential displacement from

  
  

x
x

σ → ϕ
η → ϕ

Therefore η(x) represents displacement along the constant 

( )
2 2

min

v
4

µϕ = −V

( ) 0global degeneracy of the equilibriumU 1  mη⇒ =

η(x) is the Goldstone boson field.
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Goldstone Model
In summary, the Goldstone Model exhibits hidden symmetry in that the 
equilibrium state is degenerate.  One component of the original complex 
scalar field acquires mass, while the other one (the component along the 
field equilibrium) is the massless Goldstone boson.

                                               n.d.f
Initially :  complex           2
After    :  real massive   1
               real massless  1     Goldstone boson

  
 

 ϕ →
σ →
η → ←

The Goldstone theorem states that the number of massless spin zero 
Goldstone bosons will be equal to the number of spontaneously hidden 
symmetry generators.  In the example above, we have one corresponding 
to the one generator of the spontaneously hidden U(1) symmetry.
No truly massless Goldstone bosons are observed in nature.  But, in the 
massless u and d quark limit, the pions π± and π0 can be viewed as the 
Goldstone bosons corresponding to a chiral SU(2) symmetry that is 
spontaneously hidden into a SU(2)V (isospin) symmetry.
We need a hidden symmetry mechanism that does not generate 
Goldstone bosons.
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Higgs Model
We can generalize the Goldstone model to be invariant under U(1)
gauge transformations by the substitution

D iqAµ µ µ µ∂ → = ∂ +
We obtain the Higgs model Lagrangian density

( ) ( ) ( )1
4D D F F

∗ µ µν
µ µν= ϕ ϕ − − ϕL V

( )
( ) ( )22 0

     

   

F x A Aµν µ ν ν µ

∗ ∗

= ∂ − ∂

ϕ = −µ ϕ ϕ+ λ ϕ ϕ λ >V

where

This Lagrangian density is invariant under Poincaré transformations and 
under the U(1) gauge transformations

( ) ( )

( ) 1

x i x

x
q

e
A A A

ε − ε

εµ µ µ µ

′ϕ⎯⎯⎯→ϕ = ϕ
′⎯⎯⎯→ = + ∂ ε

To ensure Poincaré invariance, Aµ must vanish for the equilibrium state.  
Therefore the equilibrium state corresponds toV (ϕ)|min.
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Higgs Model
As for the Goldstone model, we have two cases:
a) µ2 < 0
Then ( ) 0 0

min
ϕ = ⇒ ϕ =V

and no symmetry hiding occurs.  The Lagrangian density becomes that of 
scalar electrodynamics with an extra quartic self interaction term

b) µ2 > 0
Then ( )

2 2 2
2 2

0 04 2 2
2

min

v vµ µϕ = − ⇒ ϕ = ϕ = ≡ >
λ

V

The equilibrium state is degenerate and characterized by 0 2
v ie θϕ =

00 0
2
vθ = →ϕ = >

which is always possible since the theory is also globally U(1) phase 
invariant.

where m2 = -µ2 is the mass associated to the complex Klein-Gordon field.
( ) ( ) ( )22 1

4D D m F F
∗ µ ∗ µν ∗

µ µν= ϕ ϕ − ϕ ϕ− −λ ϕ ϕL

Nature spontaneously chooses one equilibrium point, say
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Higgs Model
We can then write: ( ) ( ) ( )1

2
vx x i x⎡ ⎤ϕ = + σ + η⎣ ⎦

where σ(x) and η(x) measure the deviation of ϕ(x) from equilibrium.  A bit 
of algebra yields

where L ′int contains interaction terms cubic or quartic in the fields σ(x), 
η(x) and Aµ(x).  An insignificant constant has been discarded.  We can 
then interpret

( )( ) ( )( ) ( )
( )

221 1 1 1
2 2 4 2

2

 int

v
v

F F q A A

q A

µ µ µν µ
µ µ µν µ

µ
µ

= ∂ σ ∂ σ −µ σ + ∂ η ∂ η − +

′+ ∂ η +

L

L

21
2

2real Klein-Gordon field   mσ→ = µ
but the interpretation

0real Klein-Gordon field    

real Proca field                vA

m
A M q

η
µ

η→ =
→ =

is not possible because of the quadratic term

( )vq Aµ
µ∂ η
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Higgs Model
Also, the number of degrees of freedom would not add up:

2
4

2

1
1

n.d.f
complex 

Initially:  
real massless 

real massive
After    :  real massless 

real massive 

                                           
              

 
    

         
      

    

A

A

⎫ϕ →⎧⎪ ⎪ →⎨ ⎬µ →⎪ ⎪⎩ ⎭

σ →
η →
µ

5

3

 

 

⎫⎧
⎪⎪

→⎨ ⎬
⎪ ⎪→⎩ ⎭

We conclude that the Lagrangian density after spontaneous symmetry 
hiding contains an unphysical field.
The field η(x) can be eliminated through a gauge transformation yielding 
the form

( ) ( )1
2

vx x⎡ ⎤ϕ = + σ⎣ ⎦
This is called the unitary gauge.  
The η(x) field is called a would-be-Goldstone boson field.
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2
4

2
1

4
3

n.d.f
complex 

Initially:  
real massless 

real massive  
After    :  

real massive

                                           
              

 
    

        
 

      

A

A

⎫ϕ →⎧⎪ ⎪ →⎨ ⎬µ →⎪ ⎪⎩ ⎭
⎫σ →⎧⎪ ⎪ →⎨ ⎬µ →⎪ ⎪⎩ ⎭

Higgs Model
In this gauge we have

( )( ) ( )
( )

221 1 1
2 4 2

3 4 2 21 1
4 2 2

2
int

 int

v

v v

F F q A A

q A A

µ µν µ
µ µν µ

µ
µ

= ∂ σ ∂ σ −µ σ − + +

= −λ σ − λσ + σ+σ

L L

L
Since L int contains no quadratic terms in the fields, we can interpret

21
2

2real Klein-Gordon field   
real Proca field                 vA

m
A M qµ

σ → = µ
→ =

and the number of degrees of freedom do add up:

Since the initial Lagrangian density is gauge invariant, our theory 
contains 4 physical degrees of freedom taken by a real massive scalar 
particle and a real massive vector particle.
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Higgs Model
The massless Goldstone boson field η(x) has disappeared from the 
theory, and has allowed the Aµ(x) field to acquire mass! 

vector boson acquires 
mass without spoiling 
gauge invariance

Higgs mechanism⇒

The massive scalar field is a Higgs boson field.

Note that gauge invariance has also given us the way the Higgs boson 
self couples and the way it couples to the massive Aµ(x).

The Standard Model requires the Higgs mechanism to be applied to a 
non-abelian gauge invariant theory.
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