
A
T

L
-L

A
R

G
-9

9-
00

2
28

 Ja
n

19
99

Endcap Hadronic Calorimeter O�ine

Testbeam Software

The hec adc Package
Version 3.6

M. Lefebvre D. O'Neil

Department of Physics and Astronomy

University of Victoria

Victoria, British Columbia, Canada

January 10, 1999

Abstract

Prototypes and �rst modules of the ATLAS Hadronic Endcap liquid argon calorimeter

were subjected to beams in several run periods since 1996. The hec adc software package

allows easy access to data recorded during these run periods, for o�ine analysis and for

online monitoring. This note describes the functionalities of the hec adc software and how

to use it.

Contents

1 Introduction 2

2 Overview of the hec adc Package 2

3 Coding Conventions 4

4 Installation and Execution 4

4.1 Installing for the First Time . 7

4.2 Upgrading from a Previous Version . 8

5 Testbeam Data 8

6 System Datacards 9

7 User Files 12

8 Include Files 13

9 System Packages 14

9.1 The Pedestal Package . 14

9.2 The Cubic Fit Package . 15

9.3 The Digital Filtering Package . 17

9.4 The Correlation Package . 19

9.5 The Beam Chamber Reconstruction Package . 19

9.6 The Calibration Package . 20

9.7 The Signal Search Package . 21

9.8 The System Histogram Package . 22

9.9 The Standard Ntuple Package . 23

10 The Online Package 26

10.1 How to Use the Online Package . 26

11 Utilities 28

11.1 Fortran Utilities . 28

11.2 UNIX Utilities . 28

11.2.1 multi run.job . 28

12 Example 30

13 Conclusion 30

1

1 Introduction

Prototypes and �rst modules of the ATLAS Hadronic Endcap liquid argon calorimeter were

subjected to beams in several run periods since 1996. The hec adc software package allows easy

access to data recorded during these run periods and has been used for o�ine analysis and for

online monitoring. In addition to providing access to raw and pre-processed data for o�ine

analysis, hec adc can output a set of standard ntuples which can be readily compared to Monte

Carlo and should be easily merged with ntuples from other subdetectors in combined tests.

The �rst version of the hec adc package (Version 1.0) was presented at the HEC meeting of

12/07/96. This note refers to Version 3.6 of the hec adc package. It describes the functionalities

of the hec adc software and how to use it. After a brief overview, the coding conventions adopted

for this package are presented. Then section 4 describes the installation and execution of the

package. Section 5 explains how to obtain the testbeam data in a form suitable for processesing

by the hec adc package. Section 6 contains a short description of available system datacards.

User �les are explained in section 7, followed by a listing of the available include �les (common

blocks) in section 8. Section 9 describes the system packages currently available. Section 10

describes the online mode of hec adc. Finally, the system utilities and a user example are given

in Sections 11 and 12.

The software code and documentation are available in a tarred, gzipped version in the afs

directory

/afs/cern.ch/atlas/testbeam/HEC/offline/dev/ .

They are also available from the hec adc homepage located at

http://wwwhep.phys.uvic.ca/~uvatlas/hec_adc/hec_adc.html .

The authors would like to thank the members of the Endcap Hadronic and Forward calorime-

ter community, in particular Matt Dobbs, Andrei Kiryunin, Peter Loch, Andrei Minaenko, Denis

Salihagic, Pierre Savard, Dieter Striegel, and Hans-Peter Wellisch for their support and contri-

butions.

Questions or comments about the hec adc package can be directed to either of

lefebvre@uvic.ca, dugan@uvic.ca, or uvatlas@pp.phys.uvic.ca.

2 Overview of the hec adc Package

The hec adc package is designed as a simple and hopefully clear framework to allow access to

the HEC testbeam data. The following wish list of goals inspired the development of the hec adc

package:

� easy access to the HEC testbeam data;

� independent code development by users;

� easy implementation of matured development code;

� easy maintenance.

The HEC testbeam data contains a limited number of relatively simple data structures.

Therefore the hec adc package was designed with a minimum e�ort in mind. The following

choices have been made:

� FORTRAN language;

2

� use of include �les for common blocks;

� use of the gmake facility;

� use of tar and gzip for distribution.

The hec adc package does not require the user to know anything about CMZ, ZEBRA or

EPIO (apart from the production of the relevant ZEBRA �les from the raw EPIO data for 1996

data only). A minimum knowledge of the gmake facility is required.

The hec adc package follows a simple, structured design. The logical structure of the code

can be followed starting from �le /src/hec_adc.f which is the main steering routine. The

hec adc package can be used in two modes:

- The o�ine mode;

this mode is the normal mode of hec adc, and allows o�ine treatement of the data, and is

the subject of this note, unless otherwise speci�ed;

- The online mode;

this mode is specially tailored to allow hec adc to be used for online monitoring, and was

extensively used for the �rst time during the April 1998 beam test period. This mode is

documented in section 10.

The general ow of the o�ine mode hec adc package is shown in Figure 2. Note that each

pass over the data is handled by di�erent routines. There is no pass counting variable (ipass)

in the hec adc package. We note the following general steps:

� Initialization;

� Execution of datacard driven system packages.

In this version we have

{ the pedestal package;

{ the cubic �t package;

{ the digital �ltering package;

{ the correlation package;

{ the beam chamber reconstruction package;

{ the calibration package;

{ the signal search package;

{ the system histogram package;

{ the standard ntuple package.

New system packages can initially be developed by users in the form of user routines (see

section 7). When mature, they can be promoted by the authors of hec adc to the level

of system packages. These packages will then be installed in hec adc for all to use. Each

system package can require one or more passes over the data set.

� User pass 1 over data (if requested);

� User pass 2 over data (if requested);

� User pass 3 over data (if requested);

3

� Termination.

Figure 2 also shows the entry points for each user routine. Note that the user must only provide

user routines and, possibly, user include �les. The program ow for a pass over the data set is

shown in Figure 2. The entry points of the pass user routines are also shown. A few relevent

include �les (see section 8 for the complete list) available to the user are shown in relation to

the routine that �lls them.

3 Coding Conventions

The hec adc package is written in FORTRAN. The version chosen for this package is FORTRAN

77 with the following allowed extensions:

� do while statements;

� enddo statements;

� include statements;

� long words.

Further, several conventions have been used in order to make it a clearly written, easy to

maintain package. These conventions are as follows:

� many clear and correct comments;

� the use of implicit none;

� print before stop;

� no automatic save;

� no goto;

� use include command for all common blocks;

� commons in documented �les, one common per �le;

� one routine per �le;

� no compilation warnings on atlas.wgs machines.

4 Installation and Execution

The installation instructions provided in this section assume the installation is being done on a

UNIX workstation. hec adc should work on other platforms (windows, mac, etc.), assuming the

presence of a fortran compiler and the CERN libraries, however, this has never been tested.

The latest public version of the hec adc package can be found in the directory

/afs/cern.ch/atlas/testbeam/HEC/offline/dev/

or from the hec adc homepage at

http://wwwhep.phys.uvic.ca/~uvatlas/hec_adc/hec_adc.html .

Please read the �les hec adc.readme and hec adc.versions for an update on the version changes

and warnings.

4

General Flow

Global initialization

Offline mode
initialization

System packages

user_ini

Pass 1

Global termination

Offline termination

user_ter

Pass 2

Pass 3

stop

user_ana1

user_evt1

user_ini1

Online mode

user_card

Figure 1: General ow of the hec adc package. The entry points for the user routines are also

shown.

5

Pass Flow

Do over
event records

Read event
banks

Process event

enddo

Pass initialization

user_ini1

Read run header record

user_evt1

tdc values

fadc values

adc values

Beam chamber

Event header

Fill adc arrays

Build tdc values

Build trigger words

Beam chamber

Peak finding

Event pedestals

Calibration (nA)

user_ana1

hec_runh.inc

hec_evth.inc

hec_adc.inc

hec_tdc.inc

hec_trig.inc

hec_ped.inc

hec_max.inc

hec_beam.inc

hec_cal.inc

Figure 2: Program ow for pass1 over the data set. Note the location of the pass 1 user routines.

Relevant include �les are shown in relation to the routine that �lls them. The optional pass 2

and pass 3 over the data set follow the same program ow.

6

4.1 Installing for the First Time

In order to install the hec adc package, it is necessary to copy the entire directory tree into

your working directory. This can be done by putting the �le hec adc.tar.gz into your working

directory and typing

gunzip hec_adc.tar.gz

tar xvf hec_adc.tar

The hec_adc.a library can then be built by entering the hec adc directory and issuing the

command

hec_adc_lib.ins

This command uses the �le hec_adc_lib.make and all the fortran and include �les in the

following directory trees

/src hec_adc fortran source files;

/inc hec_adc include files containing common blocks;

/util hec_adc utilities.

The resulting object �les are neatly kept in the directory

/obj hec_adc object files;

Once the library has been built, a sample executable (hec_adc) can be produced from the

hec_adc/user directory by issuing the command

hec_adc.ins

This command produces the executable hec_adc. For its execution, two �les are needed: the

datacard �le and the data �le. The datacard �le controls the operation of the software with

several switches. This datacard �le must be named hec adc.datacard. The data �le may be in

EPIO (for all data) or ZEBRA (for 1996 data only) format and must be named

epioin

if it is an EPIO �le, or

bank.fz

if it is an ZEBRA �le. The production of such a �le from a testbeam data tape is discussed in

section 5.

To execute the program using the sample user datacard �le provided in the user directory,

type

hec_adc >myfile.log

The output from this test run may include three �les:

myfile.log text log file;

hec_adc.hbook system histograms;

ped_out.dat pedestals;

ntuple.hbook standard ntuple output file.

In the course of code development and data analysis by the user, only �les located in the

hec_adc/user directory should be modi�ed. A discussion of how a user can modify these

routines is included in section 7.

When mature, user routines can be included in the next release of the hec adc package by

the people maintaining it. These routines will be included in the form of an available system

package, thereby making this development available to other users.

7

4.2 Upgrading from a Previous Version

An e�ort has been made to ensure that new versions of the hec adc package remain backward

compatible with previous versions back to version 2.5. Therefore, to install and run the latest

version of the package, it should not be necessary to rewrite user analysis routines. Simply install

the latest version in a new directory (as described in the previous section), copy the pre-existing

user fortran and include �les into the user directory of the new package and recompile. The only

�le which requires particular care is is the datacard �le (hec_adc.datacard). It is necessary

to change the datacard �le from one version to the next in order to incorporate new system

packages and to modify existing packages for new data. Therefore, it is advisable to use the

most recent version of the datacard �le and to copy any user datacards previously created into

the new datacard �le.

5 Testbeam Data

The hec adc package can read both raw EPIO data �les and ZEBRA data�les. In order to run

on an EPIO data �le stored on a CERN tape, enter the HEC staging area:

/afs/cern.ch/atlas/testbeam/HEC/data/

and issue the command

hec_stage firstrun lastrun

to stage the data on tape (note: this command will stage all runs between firstrun and

lastrun, see the hec stage README �le in the staging area for details). Then link to the

staged �le and run the hec adc package. The name of the EPIO input �le should be epioin.

The remainder of this section treats the ZEBRA data format, relevant only for 1996 data.

To run from a ZEBRA �le requires that the input data be in ZEBRA format and be contained

in a �le named bank.fz. A ZEBRA �le for a particular testbeam run can be produced in a two

step process. First, stage the tape as described above. Next, once the tape has been staged,

the ZEBRA �le can be produced with the adc96 program (many thanks to Denis Salihagic for

producing it from the old code). In the directory

/afs/cern.ch/atlas/testbeam/HEC/offline/dev/zebra/

compiled executables of adc96 for May, July and Sept 1996 data can be found. To run adc96

on the ATLAS wgs machines, it is only necessary to take one of these precompiled versions

and the �le job96.link in order to produce the ZEBRA �le. The user can copy the appropriate

executable and job96.link to their working area and edit job96.link so that it links to the staged

run number. Then type

job96.link

followed by

adc96_myrunperiod.exe > myfile.log

and a ZEBRA �le named bank.fz will be produced. This �le will be the input to the hec adc

package. Three example zebra �les have also been included in this directory.

If you wish to recompile adc96, the �les needed are also included in

/afs/cern.ch/atlas/testbeam/HEC/offline/dev/zebra/

8

In this case, the user should copy the �les adc96.car and job.ins into their working directory and

type

job.ins

Several �les will be created, including adc96.e, which is an executable version of adc96 (the run

period is chosen within job.ins). Also, a CMZ �le will be produced containing the contents of

adc96.car (this might be easier to edit than the .car �le). Note that job.ins will always compile

the card �le, so any changes made to the cmz �le must be exported to a card �le in order to

take e�ect.

Once the new adc96 executable has been created, use it as explained above. As of yet, no

version of adc96 exists for data after 1996.

6 System Datacards

The user can control various options of the hec adc package with datacards. Their values are

set in the �le /user/hec_adc.datacard. The following system datacards are available:

rnmode i 1= offline mode

2= online mode (overrides some other datacards)

intyp i 1= input data file type flag (1 is ZEBRA)

(2 is EPIO)

i 2= logical unit for data file reading

npass i 1= number of analysis passes (<4)

nevtm i 1= maximum number of events to analyse per pass

runpd i 1= 1 may96 run period

1= 2 jul96 run period

1= 3 sep96 run period

1= 4 feb97 run period (technical)

1= 5 may97 run period

1= 6 oct97 run period

1= 7 apr98 run period

1= 8 aug98 run period

mkped i 1= 1 make peds for each event only

1= 2 make peds over all events only

1= 3 both methods, but prefer for each event

1= 4 both methods, but prefer over all events

1<=0 do not make peds

i 2= first time sampling (meaningful if irunpd>3)

i 3= last time sampling (meaningful if irunpd>3)

r 4= sigma cut for peds production (for over all events)

if <= 0, then no cut and only one pass is used

i 5= 1 use random trigger events only (automatic if irunpd<4)

5= 2 use pretrigger

5<=0 use all triggers

i 6= read pedestal file flag (>0 = read ped)

9

i 7= logical unit for pedestal file reading

i 8= output pedestal file flag (>0 = write ped)

i 9= logical unit for pedestal file writing

i 10= print flag (=0 do not print the list of pedestals)

mkcub i 1= find adc max using simple cubic fit (>0 = enable)

r 2= sigma cut above which the cubic fit is used (<0 = disable)

i 3= time slice number used if cubic fit not used

i 4= restrict peak finding time range flag (>0 = enable)

i 5= min time slice for restricted peak search (if activated)

i 6= max time slice for restricted peak search (if activated)

mkdig i 1= find adc max using digital filtering (>0 = enable)

mpref i 1= prefered adc max finding package

if more than one adc max finding package

is enabled, this card determines the

package that will be used to fill the

generic adc max common (see hec_max.inc)

1= 1 for simple cubic fit

1= 2 for digital filtering

1= 3 digital filtering but in cells with

bad weights use maximum time slice

(dig_tzero + 3)

1= 4 digital filtering but in cells with

bad weights use cubic fit

mkhis i 1= system histograms flag (>0 = make his)

i 2= logical unit for system histogram file writing

i 3= do/don't (1/0) use search algorithm to determine

which cells will fill histogram

hiscon i 1= do/don't (1/0) produce pedestal and noise histograms

i 2= do/don't (1/0) produce geometrical energy distribution histograms

i 3= do/don't (1/0) produce uncorrected adc histograms

i 4= do/don't (1/0) produce tdc corrected histograms

i 5= do/don't (1/0) produce calibrated histograms

i 6= do/don't (1/0) produce cluster histograms

hisctit##

Cluster title card. ## is the number of the cluster

the title refers to (eg. hisctit01 is cluster 1)

c 1= 4 character title of cluster (eg. 'pi,h')

hisclus##

Cluster definition card. ## is the number of the cluster

(eg. hisclus02 is cluster 2)

i 1= number of cells in cluster (number to follow in list)

i 2= channel number of first cell in cluster

i 3= channel number of second cell in cluster

10

i etc. up to number of cells specified in first argument

iocal i 1= read calibration file flag (>0 = read cal)

i 2= logical unit for calibration file reading

i 3= do/don't (1/0) print calibration constants to screen

rrunh i 1= correct run number (if <0, ignore)

r 2= correct beam energy(if <0, ignore)

i 3= correct beam particle type(if <0, ignore)

r 4= correct x-position (mm) of cryostat

(if >10000, ignore)

r 5= correct y-position (mm) of MWPC moveable table

(if >10000, ignore)

beamc i 1= beam chamber reconstruction on/off (1/0)

r 2= z-coordinate (cm) (along beam), at which lateral

(x,y)-coordinates of beam should be calculated

i 3= beam histograms print flag (print, if .ne.0

and if mkhis flag is on)

i 4= logical unit for alignment constants reading

i 5= logical unit for alignment constants writing

mkcrl i 1= turn channel/time correlation on (>0 = make correlations)

i 2= logical unit number for crl histo output

search i 1= search algorithms:<0= search package disabled

0= dummy search

1= standard search (D. Striegel)

2= (0) could be replaced by user

subroutine hec_search_user

The following values are for the standard algorithm

i 2= timeslice to start searching

i 3= timeslice to stop searching

i 4= number of slices to compare (3, 5, 7)

l 5= apply a cut on maximum

r 6= level of the cut

mkntp i 1= output standard ntuple (1=yes,0=no)

i 2= logical unit number of ntuple file

i 3= units of energy in event ntuple

(1=adc,2=nA,3=GeV)

r 4= difference from expected time-zero (in ns).

used to screen out events with bad timing

(0. deactivates)

i 5= turn on/off (1/0) ntuple user routines

online i 1= activate script-controlled online mode (1 = yes)

i 2= run number fed from UNIX script

i 3= mon_break

11

The user can also program user datacards, see section 7 for details.

7 User Files

All user routines can be found in the directory

hec_adc/user

The user can supply the following routines:

user_card.f setting up of user datacards;

user_ini.f user initialization for run;

user_ini1.f user pass 1 initialization routine;

user_evt1.f user pass 1 event routine (called once/event);

user_ana1.f user pass 1 end of run routine (called once/run);

user_ini2.f user pass 2 initialization routine;

user_evt2.f user pass 2 event routine;

user_ana2.f user pass 2 end of run routine;

user_ini3.f user pass 3 initialization routine;

user_evt3.f user pass 3 event routine;

user_ana3.f user pass 3 end of run routine;

user_ter.f user termination routine;

user_search.f user routine for search package

(see search documentation);

user_ntuple_block_ini.f user routine for ntuple package (booking)

(see ntuple documentation);

user_ntuple_block_evt1.f user routine for ntuple package (filling)

(see ntuple documentation).

A dummy version of each of these routines is in the hec_adc.a library, therefore only the ones

altered by the user need to be supplied in the hec_adc/user directory.

During intialization, the hec adc package will call the user_card.f routine, where the user

can program user datacards. An example on how to program user datacards can be found in

the user_card.f �le provided. After actually reading the datacards from hec_adc.datacard,

the user_ini.f routine will be called. There, the user can perform global user initializations,

like opening an hbook �le and booking histograms (note: hbook initializations are already done

by the system, you need only open an hbook �le, �ll it and close it). The values of the system

and user datacards are then available and can be used (see section 8).

For the �rst pass over the data set, the user can provide user_ini1.f as the user pass1

inititialization, and user_evt1.f as the user routine called for each event, and user_ana1.f as

the user routine called at the end of the data set. Similarly, if more than one pass is needed,

the user can provide _ini, _evt and _ana �les for a second and third pass. During termination,

the hec adc package calls the user termination routine user_ter.f.

The user is, of course, free to have as many user include �les as required to communicate

between the user routines. They should be included in the hec_adc.make �le dependencies,

along with any new user routines.

To produce the hec adc executable, the user needs to execute the �le

hec_adc.ins

This command uses the �le hec_adc.make, the library hec_adc.a and all the user*.f �les.

The resulting user object �les remain on the hec_adc/user directory. It is up to the user to

12

maintain both hec_adc.ins, where the links to other �les are set, and hec_adc.make, the make

�le instructing how to build the executable.

For each user �le to compile, the hec_adc.make �le needs only to contain reference to user

include �les (ie. any .inc �les created by the user).

The user also needs to supply the �le hec_adc.datacard that contains the user's choice of

datacard values. System and user datacards must be put in hec_adc.datacard. The program

can then be executed from the directory hec_adc/user by typing, for example,

hec_adc > myfile.log

8 Include Files

The user has access to the data through include �les located in the directory hec_adc/inc.

Hopefully, they contain enough comments to be self documented. Please read them carefully.

The only include �le which is required by other include �les is hec par.inc. This include �le

contains the array dimensions used in many other include �les and therefore should be present

at the top of most routines (it must precede the other include �les).

System include �les can be grouped as follows:

� include �les relevant to all user*.f routines:

hec_par.inc fixed parameters, also used by other include files;

hec_datacard.inc variables associated with datacards.

� include �les relevant after initialization

hec_cal_coef.inc calibration coefficients (if read from file);

hec_geo.inc geometry correspondence tables and bad cells list;

hec_runh.inc run header info (RUNH bank).

� include �les relevant for each event of a run

hec_adc.inc adc values;

hec_beam.inc beam particle trajectory;

hec_cal.inc calibrated energy (nA);

hec_crl.inc information from correlation package;

hec_cub.inc signal maximum information from cubic fit package;

hec_dig.inc signal maximum information from digital filtering

package;

hec_evth.inc event number and pattern units (EVTH bank);

hec_fadc.inc flash adc values;

hec_max.inc pedestal subtracted peak height and time for multiple

time sample data filled by ``preferred'' method;

hec_ntuple.inc ntuple variables;

hec_online.inc online mode information;

hec_ped.inc adc pedestal and pedestal rms values;

hec_search.inc info from signal finding algorithm;

hec_tdc.inc tdc values;

hec_trig.inc trigger words.

13

� include �les containing raw data or used by the system (generally of no interest to the

user):

hec_beam_sys*.inc used by beam chamber package;

hec_dig_sys.inc used by digital filtering package;

hec_dwpc.inc beam chamber data;

hec_epio.inc epio common;

hec_his_sys.inc used by system histogram package;

hec_maxepio.inc epio buffer size;

hec_ntuple_sys.inc used by system ntuple package;

hec_paw.inc paw common;

hec_ped_sys.inc used by pedestal package;

hec_search_1_sys.inc information for signal search algorithm 1

hec_stats_epio.inc epio banks statistics

hec_zebra zebra common.

9 System Packages

As mentioned earlier, mature user routines can be made available to other users in the form of

system packages. The system packages currently available are described below.

9.1 The Pedestal Package

The pedestal package allows the user to calculate pedestals and their rms for each cell. These

quantities can be computed in two general ways in this package:

1- event by event;

2- over all events in a run.

The event by event pedestal calculation is only possible for data taken from February 1997

onwards (run periods 4 and up, data taken with multiple time sampling). It uses a selectable

range of time slices, usually the �rst few. The pedestals and rms are obtained from the mean

and rms of the content of these time slices. In particular, if only one time slice is selected, no

rms can be computed. The pedestal rms value obtained with more than one time slice, for each

event, is in principle independent of the number of time slices used (as long as they are away

from the signal time slices). Since these pedestals and rms values are di�erent for each event,

they cannot be read from or output to �le.

The pedestals and their rms over all events in a run are obtained from the mean and rms

of the event by event pedestals calculated over a pass over the data. A second pass may be

required if a sigma cut is requested. A summary of the results is printed after each pass. For

data taken from February 1997 onwards, if more than one time slice is requested, say n, then

the pedestal rms values will approximately scale like 1=
p
n. The type of trigger can also be

selected. Random triggers are automatically selected for data taken in 1996 (run periods 1 to

3). Pedestals and rms computed over all events can be read from or output to �le. Although

the pedestal �le format is compatible with the old HEC code, it is recommended to produce

the pedestals directly in the code. It takes a few seconds on an hp735. Note that the pedestal

rms obtained over all events, for run periods 4 and up, represent the uctuation of the event

by event pedestals, each of which are the mean over a selectable time slice window. If the user

wishes to produce a pedestal rms indicative of the uctuation of individual time slices, simply

set the time slice range to only one time slice (with 2 = 1 and 3 = 1, see below).

14

Both methods can be requested simultaneously; in this case, the preferred method must be

speci�ed. Otherwise, the preferred method is the one selected. The preferred arrays are �lled

for every event. The values are available to the user via the include �le hec_ped.inc (which

requires the �le hec_par.inc) which contains the following arrays:

adc_ped(ic) adc pedestal (real) Prefered method

adc_rms(ic) adc pedestal rms (real)

adc_ped_run(ic) adc pedestal (real) Computed over a run

adc_rms_run(ic) adc pedestal rms (real)

adc_ped_evt(ic) adc pedestal (real) Computed at each event

adc_rms_evt(ic) adc pedestal rms (real)

The pedestal package is steered by the following datacards:

mkped i 1= 1 make peds for each event only

1= 2 make peds over all events only

1= 3 both methods, but prefer for each event

1= 4 both methods, but prefer over all events

1<=0 do not make peds

i 2= first time sampling (meaningful if irunpd>3)

i 3= last time sampling (meaningful if irunpd>3)

r 4= sigma cut for peds production (for over all events)

i 5= 1 use random trigger events only (automatic if irunpd<4)

5= 2 use pretrigger

5<=0 use all triggers

(5 is only for over all events)

i 6= read pedestal file flag (>0 = read ped)

i 7= logical unit for pedestal file reading

i 8= output pedestal file flag (>0 = write ped)

i 9= logical unit for pedestal file writing

i 10= print flag (=0 do not print the list of pedestals)

For example,

mkped 1=3 2=1 3=4 4=1.5 5=0 6=0 7=48 8=1 9=49 10=1

instructs the pedestal package to �rst compute pedestals and rms over all events using two

passes over the data set, with a 1.5 sigma cut on the second pass, and to output the result to

�le. Then, pedestals are also computed at every event during the user passes. The user can then

access, for each event, pedestals and rms computed using both methods: event by event in arrays

adc_ped_evt and adc_rms_evt, and over all events in arrays adc_ped_run and adc_rms_run.

Since 1 = 3 was selected in this example, the preferred arrays adc_ped and adc_rms are �lled,

every event, with the pedestals and rms computed for that event. These preferred arrays allow

the user to write code that can accept any types of pedestals, selected using the datacard. The

pedestal list will be printed.

9.2 The Cubic Fit Package

Communication with the cubic �t package is done using the following datacard:

mkcub i 1= find adc max using simple cubic fit (>0 = enable)

r 2= sigma cut above which the cubic fit is used (<0 = disable)

i 3= time slice number used if cubic fit not used

15

i 4= restrict peak finding time range flag (>0 = enable)

i 5= min time slice for restricted peak search (if activated)

i 6= max time slice for restricted peak search (if activated)

The purpose of the cubic �t package is to �nd the signal peak height (in adc counts) and

time (in time slice units) for an individual channel in an individual event. The cubic �t method

provides a quick, simple method to �t the signal peak and can act as a cross-check of more

sophisticated �tting methods such as digital �ltering.

The output of the package is contained in the include �le hec_cub.inc and consists of the

array adc_cub_ic with the following structure:

adc_cub_ic(ic, 1) max adc value in channel ic

adc_cub_ic(ic, 2) max adc t value in channel ic in units of time samplings

The time slice with the highest adc signal becomes the search seed. The time slice window in

which the seed can reside can be set with the parameters 2, 3 and 4 of the datacard. The seed

time slice becomes the second or third time slice of a �t window of 4 time slices. The cubic �t

package then �ts a cubic function to the 4 time samplings in the �t window. The cubic function

is:

Y (t0) = a0 + a1t
0 + a2t

02 + a3t
03

where the ai are 4 �t parameters and t0 = t� t0, and t0 is the �rst time sampling used in the �t.

This provides a system of four equations with 4 unknowns which can easily be solved to obtain

the four coe�cients of the �t. The time of the maximum (in units of time samplings) is then

obtained from the expression:

t0max =
�a2 �

q
a2
2
� 3a1a3

3a3

and the peak height is then obtained from the cubic equation above with t0 = t0max. For events

in which the method fails, the peak is set to the seed time slice signal and time.

This �tting procedure works well for channels containing a high signal, however, it has

been found to produce biased results for low signal channels. In order to reduce this bias, two

datacard switches (2 and 3 above) have been provided. The �rst switch sets the sigma threshold

above which the cubic �t is a valid �tting method. For example, if this value is set to 5, then

any channel containing a �tted maximum adc more than 5 sigma above the pedestal will be

considered a good cubic �t; for any channel below this threshold an alternate maximum will be

used. The simplest alternate maximum is used, this is the adc value at a certain timeslice as

set with datacard switch 3. Therefore, if this method is activated the cubic �t will be used for

high signals and the value of the chosen timeslice will be used for low signals.

Since this software contains a choice of multiple signal �tting packages, a generic set arrays

can be �lled with the peak height and time from the �tting package preferred by the user. The

�tting package used to �ll these arrays is chosen with the datacard

mpref i 1= preferred adc max finding package

if more than one adc max finding package

is enabled, this card determines the

package that will be used to fill the

generic adc max common (see hec_adc_max.inc)

1= 1 for simple cubic fit

1= 2 for digital filtering

16

1= 3 digital filtering but in cells with

bad weights use maximum time slice

(dig_tzero + 3)

1= 4 digital filtering but in cells with

bad weights use cubic fit

For example m_pref 1=1 �lls the generic array with the output of the cubic �t package, while

m_pref 1=2 will �ll these same arrays with the output from a di�erent �tting method. These

general arrays are in the include �le hec_max.inc and have the structure (all max adc values

are pedestal subtracted):

adc_max_ic(ic, 1) max adc values "adc channel system"

adc_max_ic(ic, 2) max adc t values in units of ns

adc_max_db(i_mod, i_seg, i_pad, 1) max adc values "database system"

adc_max_db(i_mod, i_seg, i_pad, 2) max adc t values in units of ns

adc_max_ph(i_eta, i_phi, i_z, 1) max adc values "physics system"

adc_max_ph(i_eta, i_phi, i_z, 2) max adc t values in units of ns

9.3 The Digital Filtering Package

Communication with the digital �ltering package is done using the following datacard:

mkdig i 1= find adc max using digital filtering (>0 = enable)

The purpose of the digital �ltering package is to �nd the signal peak height (in adc counts)

and time (in ns) for an individual channel in an individual event. This method of determining

the time and height of maximum signal should provide the best possible results in terms of noise

performance while maintaining good calculation speed.

The digital �ltering method, as implemented in the hec adc code, requires two �les of pa-

rameters, one set for amplitude reconstruction, and one set for time reconstruction. These

parameters are used to calculate the digital �ltering weights for each channel, for each event.

For example, for April 1998 data, the time dependence of the weights is parametrized with a

polynomial of 4th order. So, there are 5 parameters needed to calculate each individual weight.

The layout of the �les of parameters is as follows:

version number (time stamp eg. 981014)

number of slices used in filtering (eg. 5)

number of constants used to calculate weights for one channel (eg. 5)

first time slice used in peak reconstruction (eg. 5)

channel weight | File Content

--

1 1 | par1 par2 par3 par4 par5

1 2 | par1 par2 par3 par4 par5

1 3 | par1 par2 par3 par4 par5

1 4 | par1 par2 par3 par4 par5

1 5 | par1 par2 par3 par4 par5

2 1 | par1 par2 par3 par4 par5

2 2 | par1 par2 par3 par4 par5

2 3 | par1 par2 par3 par4 par5

2 4 | par1 par2 par3 par4 par5

17

2 5 | par1 par2 par3 par4 par5

. . |

. . |

. . |

The formula for obtaining the ith weight for the kth channel is then

wk

i =
4X

l=0

parki (l + 1) � tlTDC:

Using this expression weights can be calculated for amplitide (wa) and time (wt) reconstruction.

Once these weights are known, the amplitude in a particular channel can be calculated using

Amplitude =
5X

i=1

(wa)i � S5+i�1

where Si is the pedestal subtracted adc value of the ith time sampling. After the reconstruction

of the amplitude, calibration coe�cients can be applied to convert pedestal subtracted adc to

nA. Similarly, time can be reconstructed using

Amplitude � � =
5X

i=1

(wt)i � S5+i�1

where � is the time di�erence (in ns) from the expected t0.

The output of the package is contained in the include �le hec_dig.inc and consists of the

array adc_dig_ic with the following structure:

adc_dig_ic(ic, 1) max adc value in channel ic

adc_dig_ic(ic, 2) max adc t value in channel ic in units of ns

Since this release of this software contains a choice of multiple signal �tting packages, a

generic set arrays can be �lled with the peak height and time from the �tting package preferred

by the user. The �tting package used to �ll these arrays is chosen with the datacard

mpref i 1= preferred adc max finding package

if more than one adc max finding package

is enabled, this card determines the

package that will be used to fill the

generic adc max common (see hec_adc_max.inc)

1= 1 for simple cubic fit

1= 2 for digital filtering

1= 3 digital filtering but in cells with

bad weights use maximum time slice

(dig_tzero + 3)

1= 4 digital filtering but in cells with

bad weights use cubic fit

These general arrays are in the include �le hec_max.inc and have the structure (all max adc

values are pedestal subtracted):

adc_max_ic(ic, 1) max adc values "adc channel system"

adc_max_ic(ic, 2) max adc t values in units of ns

18

adc_max_db(i_mod, i_seg, i_pad, 1) max adc values "database system"

adc_max_db(i_mod, i_seg, i_pad, 2) max adc t values in units ns

adc_max_ph(i_eta, i_phi, i_z, 1) max adc values "physics system"

adc_max_ph(i_eta, i_phi, i_z, 2) max adc t values in units of ns

9.4 The Correlation Package

Communication with this package is done with the following datacard:

mkcrl i 1= turn channel/time correlation on

(>0 = make correlations)

i 2= logical unit number for crl histo output

The correlation package processes random trigger events and its purpose is to calculate:

� for each adc channel and for each time sampling the average signal and r.m.s. (pedestal

and noise)

� for each adc channel the correlation coe�cients between di�erent time samplings

� for each time sampling the correlation coe�cients between di�erent adc channels

The output of the package is contained in 3 ntuples in the an hbook �le crl.hbook. Ntuple

1 provides pedestal and noise information, ntuple 2 provides time sampling correlations and

ntuple 3 provides channel-to-channel correlations. Utilities (kumacs) have been provided in the

hec_adc/util/crl directory for processing these ntuples.

For further information on this package contact Andrei Kiryunin (Andrei.Kiryunin@cern.ch).

9.5 The Beam Chamber Reconstruction Package

Communication with the beam chamber package is done with the following datacard:

beamc i 1= beam chamber reconstruction on/off (1/0)

r 2= z-coordinate (cm) (along beam), at which lateral

(x,y)-coordinates of beam should be calculated

i 3= beam histograms print flag (print, if .ne. 0

and if mkhis flag is on)

i 4= logical unit for alignment constants reading

i 5= logical unit for alignment constants writing

The beam chamber package is designed to use beam chamber information to reconstruct

particle direction (and hence can be used to calculate the impact point on the calorimeter).

The package �lls a common block in the hec_beam.inc include �le with the following vari-

ables:

xbeam - beam x-coordinate at z=zbeam

ybeam - beam y-coordinate at z=zbeam

zbeam - z-coordinate, at which (x,y)-coordinates of a beam trajectory

are calculated. It should be set during the initialization stage.

xslop - trajectory x-slop: at any z x=xbeam+xslop*(z-zbeam)

yslop - trajectory y-slop: at any z y=ybeam+yslop*(z-zbeam)

xbeam_ok - .TRUE., if beam x-projection is successfully reconstructed

ybeam_ok - .TRUE., if beam y-projection is successfully reconstructed

19

This package requires knowledge of the alignment of the beam chambers in order to �ll the

beam common block. The package attempts to read the required alignment parameters from a

�le called align.dat in the directory in which hec adc is being run. If this �le is not present the

package passes over the data to calculate the required parameters and creates the align.dat

�le.

For further information about this package contact Andrei Minaenko (Andrei.Minaenko@cern.ch).

9.6 The Calibration Package

Communication with the calibration package is done through the following datacard:

iocal i 1= read calibration file flag (>0 = read cal)

i 2= logical unit for calibration file reading

i 3= do/don't (1/0) print calibration constants to screen

The calibration package is designed to convert the raw adc values obtained from the EPIO

or ZEBRA input into energies measured in nano-amps. It reads a user provided calibration �le

that must be named calib.dat. A link to an example of such a �le for will be automatically

produced by hec_adc.ins. The �le will be formatted as in the following example

981014

1 0.00000e+00 2.95729e+01 -1.47677e-06 2.18080e-11 2

2 1.80468e+02 3.52081e+01 -2.06677e-06 2.41705e-11 2

3 1.03668e+01 3.23534e+01 -3.80024e-06 5.02904e-11 2

4 -1.35757e+02 3.59394e+01 -4.30791e-06 5.65738e-11 2

5 -1.40582e+01 3.02743e+01 -7.09976e-07 1.09726e-11 1

.

.

.

where the �rst line contains the version number (date stamp) of the calibration �le. The cali-

bration constants start on the second line; the �rst column of numbers is the channel number,

the next four columns are four calibration coe�cients and the �nal column is a status number

(>2 is a dead channel, 1 is a good channel). The calibration package will read this �le and apply

a calibration according to the following formula for runs taken from October 1997 onwards:

energy = c2(ADC) + c3(ADC)
2 + c4(ADC)

3:

Please note that the �rst calibration constant (c1) is now ignored for energy reconstruction. For

previous periods the formula applied is:

energy = c1 + c2(ADC) + c3(c1 + c2(ADC))
2 + c4(c1 + c2(ADC))

3

where the energy calculated is the energy for a particular channel, c1, c2, c3 and c4 are the 4

calibration coe�cients read in from the calibration �le and ADC is the pedestal subtracted adc

content of that channel.

Using this information, the calibration package �lls the hec_cal.inc include �le with arrays

of the energy in each cell in each of the three coordinate systems. The three arrays are as follows:

hec_cal_ic(ic) the energy in cell ic

hec_cal_db(imod,iseg,ipad) the energy in module=imod, segment=iseg and pad=ipad

hec_cal_ph(ieta,iphi,iz) the energy in eta=ieta, phi=iphi, z=iz

The user should access these arrays in order to use calibrated energies.

20

9.7 The Signal Search Package

Signal Search Package (by D. Striegel)

The signal search package looks for cells with a valid signal shape in time according to a certain

algorithm (hence the package is valid only for data taken from February 1997 onwards, that is

run periods 4 and up).

The results of the signal search for each event is available in the �le hec_search.inc.

hec_s_chan(ic)

.false. = no valid signal found in channel ic

.true. = valid signal found in channel ic

if no algorithm selected, all .true.

hec_s_result(ic, j)

for a channel with valid signal, adc value of channel ic

where j is a time slice index such that adc max is at j=3

for a channel with no valid signal, all zeros.

meaningful only if hec_s_chan(ic) is .true.

hec_s_im(ic)

index of timeslice (i_t) of the adc max which is at j=3

in hec_s_result

meaningful only if hec_s_chan(ic) is .true., but not

meaningful for the dummy search algorithm (number 0)

hec_s_hit

.true. = at least one channel with valid signal

if no algorithm, then .true.

hec_s_cells

number of channels with valid signal

if no algorithm, this is equal to i_adc_used

hec_s_count(ic)

number of events in which channel ic had a valid signal

if no algorithm, this is the number of events considered

The signal search package is controlled by the search datacard. The �rst parameter selects

the search algorithm. The other 5 (real) parameters can be used by the various algorithms.

search i 1= search algorithms:<0= search package disabled

0= dummy search

1= standard search (D. Striegel)

2= (0) could be replaced by user

subroutine hec_search_user

The following values are for the standard algorithm

r 2= timeslice to start searching

r 3= timeslice to stop searching

r 4= number of slices to compare (3, 5, 7)

r 5= apply a cut on maximum

r 6= level of the cut

21

The following algorithms can be selected:

1 < 0: The search package is not activated. Results are as if no valid signal was ever found.

1 = 0: Dummy search algorithm. Results are as if all channels always contained valid signal.

1 = 1: Standard algorithm (by D. Striegel). Only physics trigger events are treated by this

algorithm. Let the datacard search have the following parameters:

2= t1 3= t2 4= ntc 5= cutflag 6= cut

For each channel the standard algorithm searches for the maximum adc in the timeslice

range [t1, t2]

Case cutag = 0. The time distribution is compared to a valid pulse shape. The

comparison uses ntc timeslices (only the values 3, 5 and 7 are implemented).

Case cutag = 1. If this maximum is above the value cut*rms, where rms is the

channel's pedestal rms, then the time distribution is compared to a valid pulse shape.

The comparison uses ntc timeslices (only the values 3, 5 and 7 are implemented).

Variables speci�c to this algorithm are in hec_search_1_sys.inc

1 > 1: User de�ned algorithm. The user can supply a routine user_search.f that, given an

event, �lls the common hec_search_inc following a user de�ned algorithm. The default

user algorithm is the dummy algorithm.

Please mail any comments or questions to striegel@mppmu.mpg.de .

9.8 The System Histogram Package

System histograms can be produced by the datacard

mkhis i 1= system histograms flag (>0 = make his)

i 2= logical unit for system histogram file writing

i 3= do/don't (1/0) use search algorithm to determine

which cells will fill histogram

For example,

mkhis 1=1 2=52 3=0

will generate the system histograms. They are listed by the hec adc program, and they are

output in the �le hec adc.hbook. Histograms produced by this package are deleted from memory

after output and so do not interfere with the booking of user histograms.

The third datacard switch allows the histogram package to use the results of the search

package to determine which channels will be included in each histogram on an event-by-event

basis. Therefore, if this feature is activated, histograms will be �lled only for the channels

containing signal. For example, if 1000 events are processed and channel 72 only contains signal

in 5 of these events, there will only be 5 entries in histograms referring to channel 72.

There is a second datacard (hiscon) which can be used to control the histogram package. This

datacard is shared with the online package and allows the user to turn on or o� the production

of certain categories of histograms. This datacard is shown below:

22

hiscon i 1= do/don't (1/0) produce pedestal and noise histograms

i 2= do/don't (1/0) produce geometrical energy distribution histograms

i 3= do/don't (1/0) produce uncorrected adc histograms

i 4= do/don't (1/0) produce tdc corrected histograms

i 5= do/don't (1/0) produce calibrated (nA) histograms

i 6= do/don't (1/0) produce cluster histograms

To �ll the cluster histograms, clusters must be de�ned. This is done with the following two

datacards:

hisctit##

Cluster title card. ## is the number of the cluster

the title refers to (eg. hisctit01 is cluster 1)

c 1= 4 character title of cluster (eg. 'pi,h')

hisclus##

Cluster definition card. ## is the number of the cluster

(eg. hisclus02 is cluster 2)

i 1= number of cells in cluster (number to follow in list)

i 2= channel number of first cell in cluster

i 3= channel number of second cell in cluster

i etc. up to number of cells specified in first argument

For example the following datacards de�ne one pion cluster with title \H,pi" (pion hitting impact

point H in August 1998) composed of the 19 cells 3, 5, 4, 76, 1, 16, 15, 88, 14, 13, 86, 12, 11,

84, 41, 24, 23, 96 and 21:

hisctit01 'H,pi'

hisclus01 1=19 3 5 4 76 1 16 15 88 14 13 86 12 11 84 41 24 23 96 21

Similarly, the folowing datacards de�ne one electron cluster with title \H,e-" composed of the 3

cells 3, 11 and 13:

hisctit02 'H,e-'

hisclus02 1=3 3 11 13

The histogram package now contains the same histograms available in the online display at

testbeam. See section 10 for a list of the available histograms.

9.9 The Standard Ntuple Package

Communication with the ntuple package is done through the following datacard:

mkntp i 1= output standard ntuple (1=yes,0=no)

i 2= logical unit number of ntuple file

i 3= units of energy in event ntuple

(1=adc,2=nA,3=GeV)

r 4= difference from expected time-zero (in ns).

used to screen out events with bad timing

(0. deactivates)

i 5= turn on/off (1/0) ntuple user routines

23

The ntuple package is designed to produce three standard column-wise ntuples for each run

which contain a preprocessed version of the information available in the raw data �le. It is

expected that an agreed-upon hec adc datacard will be used to �ll these ntuples for each run

and o�ine analysis will be performed on the ntuples rather than on the raw data�les. These

ntuples share a common structure with the Monte Carlo production ntuples for the hadronic

endcap allowing easy comparison of data and Monte Carlo. A common ntuple analysis program

is forseen for data and Monte Carlo.

The three ntuples produced by the package are:

1. run header ntuple (ntuple 100)

2. event ntuple (ntuple 101)

3. slow control ntuple (ntuple 102)

the contents of which are:

run ntuple:

hec_runno i run number

hec_runpd i run period number

hec_beame r beam energy

hec_noevt i number of events

hec_parttype i particle type

hec_cryox r cryostat position in x

hec_tabley r table position in y

hec_zbeam r for MWPCs, z position at which x and y

are calculated

hec_peakf i peak finding method used

1 = cubic

2 = digital filtering

0 = pure MC

-1 = spoiled MC with ordinary noise

-2 = spoiled MC with noise as after

digital filtering

hec_cal_version i version of calibration used

hec_dig_version i version of digital filtering weights used

hec_shower i shower model type

0 = experimental data

3 = GHEISHA

4 = G-FLUKA

6 = G-CALOR

hec_eunit i units of energy

(1=adc,2=nA,3=GeV,4=MC visible energy)

hec_adc_max i maximum adc channel number (eg. 144)

hec_index i index of channel with a given adc number

hec_cells_used i number of cells used (eg. <= 144)

hec_ped_rms r run pedestal rms for each channel

hec_ieta i eta value for each channel

hec_iphi i phi value for each channel

hec_iz i z value for each channel

24

hec_ic i adc channel number

event ntuple:

standard event block (hecevt - shared with MC)

hec_evtno i event number

hec_trig i trigger flag array

(physics,electron,pion,muon,random)

hec_signal r energy (signal) for each channel

MWPC block (hecmwpc - if requested)

hec_xbeam r beam x-coordinate at z=zbeam

hec_ybeam r beam y-coordinate at z=zbeam

hec_xslop r trajectory x-slop: at any z

x=xbeam+xslop*(z-zbeam)

hec_yslop r trajectory y-slop: at any z

y=ybeam+yslop*(z-zbeam)

hec_xbeam_ok i =1 if beam x-projection is successfully

reconstructed

hec_ybeam_ok i =1 if beam y-projection is successfully

reconstructed

user block (hecuser - if requested)

user-defined content

slow control ntuple: (not yet defined)

The content of these ntuples has been chosen assuming that ntuple analysis will be performed

in dedicated analysis programs rather than in PAW. This assumption means that it is possible to

tie the event ntuple to the run header ntuple in order to save space without reducing functionality.

In other words, the event ntuple is not meaningful on its own, the indices and conversion arrays

of the run header are necessary to give it meaning.

Since the cell numbering scheme is not consecutive (ie. some cells are dead or disconnected)

it is necessary to have an index variable to allow conversion from array index to channel number,

or physics system coordinate (�,�,z). The run header ntuple variable hec_index is the index

variable for this set of ntuples. This means that the value of hec_index(2) is the array index

corresponding to adc channel number 2. Sample Fortran code is shown below which could be

used in an ntuple analysis program to print the contents of a given channel.

c

c print signal in channel 28

c

print *,'signal in channel 28 is ',hec_signal(hec_index(28))

c

c loop over all good cells in run

c print eta of every channel, adc # of every channel and

c signal in channel 28 found by alternate method.

c

do i = 1, hec_cells_used

25

print *,'ieta of channel ',hec_index(i),' is ',hec_ieta(hec_index(i))

print *,'ic of array index ',i,' is ',hec_ic(i)

if (hec_ic(i) .eq. 28) then

print *,'signal in channel 28 is ',hec_signal(i)

endif

enddo

This example demonstrates the use of variables from both the run header and event ntuples,

making it awkward to do in PAW. However, if the user needed to do a quick check of cell 28 in

PAW, the following procedure would work:

nt/pl 100.hec_index(28)

(now read from screen the value of the index (eg. 26) corresponding to

channel number 28)

nt/pl 101.hec_signal(26)

In the future, an ntuple analysis program may be provided and knowledge of the details of

this structure may not be necessary for most users.

In addition to the standard event block (hecevt) in ntuple 101 (described above) two other

blocks can be added for each event at the users request. If the user activates the beam chamber

reconstruction package a special MWPC block will be added for each event, the content of

which is also described in the listing above. A second block may be added for each event with

user-de�ned content. For this purpose, two user routines and a special user include �le have

been created. The routine user_ntuple_block_ini.f is called once before the ntuple event

loop and can be used for booking the ntuple block. The block can be �lled from the routine

user_ntuple_block_evt1.f which is called every event. Example routines are provided in the

user example directory (see Section 12) and if the user block is activated (from ntuple package

datacard) a sample block will be added to the event ntuple.

10 The Online Package

In order to monitor testbeam data as it is taken, a special package has been written which allows

the o�ine routines to be used as monitoring tools. This \online package" is activated by way

of the rnmode datacard:

rnmode 1= offline/online (1/2) mode (1 is default) .

Activating the online package overrides many of the datacards controlling the other system

packages. The online package essentially replaces the main program of the o�ine code and calls

speci�c routines from di�erent system packages in order to run through the data as quickly

as possible. It produces an interactive ASCII menu and a graphical display of several useful

histograms.

10.1 How to Use the Online Package

� Create a link to the directory in which the data is stored. The online mode of the hec adc

package automatically looks for data in a directory called \data" in the directory from

which it is called. If users wish to access data in another area (eg. on another disk) then

26

they must create a link to that area and name the link \data" as in the following example:

ln -s /datadisk/datadir/ data/

This UNIX command creates a link such that any reference to the directory \data" will

be instead pointed to \/datadisk/datadir/".

� Set the maximum number of events using nevtm in hec_adc.datacard.

� Set rnmode 1=2 in hec_adc.datacard.

� Type hec_adc on the command line

� After some initialization statements are echoed to the screen the following request will be

displayed:

***ENTER RUN NUMBER TO MONITOR (0 to exit)

� Enter the number of the run to be analyzed as a 4-digit number (eg. 6733). The program

will then look for a �le called ./data/run_6733.dat.

� The user should then see output similar to the following:

***hec_online_getfile searching for data file data/run_6733.dat

***Successfully opened data/run_6733.dat

***Opened file data/run_6733.dat for online analysis

***Found data file data/run_6733.dat starting analysis

***Select Trigger type to analyse:

*** = 1 : all event types

*** = 2 : physics triggers

*** = 3 : electron triggers

*** = 4 : pion triggers

*** = 5 : muon triggers

Now a choice must be made as to which type of events the user wishes to analyze. Only

events which pass the selected trigger requirements will be included in online histograms.

� The analysis will then be performed and a summary plot will be displayed in a graphical

window. In the input window a new menu will now appear, see Figure 10.1. This menu

lists the available histograms. Typing the number of any of these histograms will lead to

it being displayed in the graphical window. Four buttons should then appear in the upper

left corner of the graphical window, one labelled \PS", one labelled \ZOOM", one labelled

\GAUSS" and one labelled \ZONE".

{ Clicking on the PS button will cause the histogram to be saved in a postscript �le

called user summary.ps. All histograms saved in this manner during the analysis of

a single run will be stored in the same postscript �le.

{ Clicking on the ZOOM button will allow the user to zoom on the displayed histogram

by clicking the left mouse button on either end of the range to be zoomed on (as per

the instructions in the ASCII window).

{ Clicking on the GAUSS button will �t a Gaussian curve to the currently displayed

histogram, printing the parameters of the �t in the upper right corner of the display.

{ Clicking on ZONE toggles between 1 histogram/page and 4 histograms/page.

To exit the graphical display and return control to the ASCII window click the right mouse

button anywhere on the graphical window.

27

� Enter 0 to exit the histogram menu and the program is ready to analyze another run.

� Enter 0 to exit the program.

11 Utilities

Included with the hec adc package is a directory containing utilities that may be of some help

to the user. The directory is hec_adc/util and it contains both Fortran and UNIX utilities.

Users are encouraged to submit their own utility routines for inclusion in this directory if they

believe that the utilities would be of general use. Routines or scripts in the utility directory are

not supported to the same extent as routines necessary to run the package (ie. the debugging

and testing is not as thorough).

11.1 Fortran Utilities

The util/ directory contains several Fortran routines that are compiled and included automat-

ically in the hec adc library and are therefore callable from the user routines. These routines

are useful for printing the contents of particular data structures. For example, the directory

currently contains three routines to print event information:

hec_dump_adc.f for printing the contents of each adc channel

hec_dump_dwpc.f for printing the content of the beam chamber bank

and one routine to print out run period information:

hec_dump_geo.f for printing out the geometry correspondence tables

of the chosen run period

11.2 UNIX Utilities

Since this package is supported on a UNIX platform, many useful UNIX scripts can be written

to make common tasks easier. One such tool has been written for inclusion with the package.

Though these scripts attempt to provide a generally useful service, and do not require any

modi�cation in order to run, the user should feel free to modify them to serve their particular

needs (particularly if the user happens to be a UNIX guru).

11.2.1 multi run.job

This UNIX tool is meant to make it easier to run the hec adc package on multiple runs. The

name of the script is multi_run.job and it will link to each �le in a list, run the hec adc package,

rename the log �le and hbook �le and move on to the next member of the list.

The script accepts three di�erent syntaxes. The �rst syntax:

multi_run.job -firstrun -lastrun

will process all runs between �rstrun and lastrun. For example, multi_run.job -6100 -6103

will process runs 6100, 6101, 6102 and 6103. The second accepted syntax:

multi_run.job run1 run2 run3 run4etc.

will process a run list of up to 9 runs entered on the command line. The �nal syntax:

multi_run.job 0 runlist.txt

28

* Histogram Number | Content *

* 1 | adc pedestals *

* 2 | pedestal vs. ic *

* 3 | adc pedestal rms *

* 4 | adc pedestal rms vs. ic *

* 5 | Max(adc) vs. ic *

* 6,7,8 | lego of Max in iz=1,2,3 *

* 10 + iz | Max-ped for depth iz *

* 14,15 | Depth profile: module 1,2 *

* 20 | TDC distribution *

* 1000 + ic | Max-ped for (ic) *

* 2000 + ic | Max(time) (ic) *

* 2500 + ic | Max(time)+TDC in ns (ic) *

* 5200 + chamber # | MWPC hit wire distribution*

* 5210 + chamber # | MWPC profile (cm) *

* 10000 + ic | ADC vs time sample (ic) *

* 11000 + ic | ADC vs time in ns (ic) *

* 12000 + ic | Energy in nA (ic) *

* 13000 + # of sigma | Energy above # sigma cut *

* 14000 + # | Energy in muon tower # *

* 14100 + # | ADC - ped in muon tower # *

* 15000 | Show clustering menu *

* 15000 + cluster # | Clustered Energy (ADC/GeV)*

****note: ic refers to channel # ******************

* Summary Histogram | Content *

* 9990 | NOISE *

* 9991 | SHAPE/TIME *

* 9992 | ENERGY PROFILE *

* 9993 | HIGH ENERGY CELLS *

* 9994 | BEAM CHAMBERS (X) *

* 9995 | BEAM CHAMBERS (Y) *

* 9996 | ENERGY CLUSTERS *

Figure 3: Menu listing the available histograms after online reconstruction.

29

will process all runs listed in a text �le named in the command line. The text �le should just

contain a single column of run numbers as in the example:

6100

6104

6106

6108

The list may be as long as the user needs. At the top of the script the user must set the name

of the directory that contains the data �les and the name of the hbook �le that will be retained

for each run.

12 Example

There is an extra user directory called user_example/ included with the package which contains

a complete working example of a simple set of user routines. In these user routines, there are

several examples of how to use variables from provided common blocks. Also, an ntuple is

booked and �lled with some of these variables. These routines are very well commented and

should serve as a good guide to writing user routines.

13 Conclusion

The hec adc software package allows for a robust and easy access to the Hadronic Endcap

calorimeter beam test data. It has been used extensively.

The recent addition of a standard ntuple has allowed the development of high level analysis

programs, more or less independently of the many hardware features that change from run

period to run period.

Future development ideas include the treatment of slow control records (only event records

are currently treated). Furthermore, it is hoped that the standard ntuple will ease the merging of

the data in the case of a combined run with the Forward calorimeter or with the Electromagnetic

Endcap calorimeter.

30

