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Abstract

Monte Carlo simulation results on the cartesian and cylindrical accordion electro-
magnetic calorimeters are presented. The 1992 pointing geometry is also introduced.
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1 Introduction

In order to achieve fast and hermetic liquid argon (LAr) calorimetry for the LHC, the
RD3 collaboration [1] proposed a novel accordion structure. Prototypes were built and
tested. A cartesian geometry electromagnetic (EM) prototype was tested in 1990 [2] and
1991 [3]. Another small EM prototype, this time with cylindrical geometries, was tested in
1991 [4]. A large pointing geometry EM and hadronic calorimeter prototype is currently
under tests.

Since the very beginning of these activities, computer simulations have played a
crucial role in guiding and optimising the prototypes’ geometrical parameters, as well as
in providing some understanding of the experimental results. An initial effort, reported
in [5], showed that the uniformity of response of the accordion EM calorimeter could be
optimised by minimising the variations of the LAr traversed for various normal incidence
impact points. Detailed charge collection was also simulated and its effect found to be
small.

Since then the simulation effort has intensified enormously, in phase with the tests of
new prototypes. Charge collection simulation has been rewritten and larger data samples
have been produced, revealing effects confirmed by experiments; cylindrical and pointing
geometries have been and are still simulated in great details.

This note is an attempt to summarise some of the results obtained for the carte-
sian and cylindrical geometries in the past two years. After a brief word on the software
and platforms used, chapter 3 describes the charge collection simulation method followed.
Simulation results, often including charge collection simulation and comparison with data,
are reported in the following two chapters: chapter 4 for the cartesian geometry (where
charge collection simulation is less important) and chapter 5 for the cylindrical (opening
and compensated) geometries (where charge collection simulation is more important). A
brief introduction to current simulation activities on the pointing geometry EM calorime-
ter can be found in chapter 6. More on this subject will be presented in a subsequent
note.

2 Software Environment

The Monte Carlo simulation described in this note is based on the GEANT simulation
package.

A part of the simulation computation has been performed with a farm of HP 9000
computers (BASTA station) at the IN2P3 computing center at Lyon. The Basta station
consists in 2 HP 9000 type 730 and 3 HP 9000 type 720. The 720 model is roughly
equivalent in time to 3090 IBM processor, while the 730 model is 20% faster. Results are
stored in a 200 Mbytes temporary disk then transferred to IBM to be registered on 200
Mbytes cartridges.

Simulations were also performed on a 4cpu 64Mbytes Apollo DN10000 in Victoria,
British Columbia, Canada.



3 Charge Collection Simulation

For each charged track segment GEANT provides the starting point, the direction, the
length, the associated deposited energy, etc. A set of such quantities for each segment is
called a ‘hit’. In particular in LAr each secondary particle, electrons or photons, is tracked
down a cutoff (10 keV for both) and corresponding hits are recorded in a bank. Using
hits the readout current corresponding to drifting charges in the LAr can be determined.
When charge collection simulation is performed, the method described below is used.

3.1 Signal Induced by Drift Charges and Readout Electronics
3.1.1 signal

case of a single charge The instantaneous current produced by a charge g, at position
 at time £, and which is drifting is given by

it)=LE.5 (1)

where Vj is the voltage applied between ground and the positive electrode, E is the electric
field at 7, ¥ is the drift velocity 7 = o(|E|).

Positive
electrode

The collected charge ¢, until go reaches the electrode, is:

Q@ 2z .
C = = E - dt
¢ Vo 0 v

where tp is the corresponding drift time. Therefore

U 5 iy B

where V is the voltage between the initial charge position and the electrode.



example: case of a uniform electric field E In this case equipotentials are equidis-
tant. That means

z
V= %E )
where d is the gap width and z the distance to the positive electrode. Therefore
z
9e = Qo7 - (3)

A continuous charged line in the gap (a hit obtained from simulation) carrying a
charge Qo is then divided into N equal subsegments with equal charge 6Qo = Qo/N
(assuming uniform ionisation along the line).

The collected charge for such a subsegment at a mean distance z; from the electrode

Qozi
Nd’

is
Iy
8Qc = 6Q0E =
And the total collected charge is

and in the limit N — oo, Q. = Qo/2.

In this case of uniform electric field, the collected charge Q. is half the hit charge
Qo-

Formula (1) shows that i(¢) is constant in this case until the elementary charge
reaches the electrode. The drift time is t}, = z;/v. So for a hit, i.e. a uniform charged
track in a gap d, the drifting of charges yields a total current 7(t) with a typical triangular
shape:

It) A
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>
tp t
(tp = d/v)
In a more general variable electric field, Eqs. (1) and (2) only are valid. To obtain

I(t) distribution, or any quantities related to drift charges, a numerical integration is
necessary.



3.1.2 readout electronics

aims To obtain the energy of the primary particle it is necessary to measure the energy
deposited by the shower which is related to charges associated to hits. These are linked
to the collected charges (Q. = Qo/2 in case of a uniform E field). So the current I(#) is
integrated in a charge preamplifier.

To improve the signal to noise ratio (including the pile-up noise), this charge pream-
plifier is followed by a filter. In the present case of high counting rate, a bipolar filter is
foreseen.

bipolar filter Such a filter consists of two derivatives followed by n integrations. It is
labelled (CR)? (RC)™.

The choice for n is dictated by noise considerations (especially pile-up at high count-
ing rate). Present values are either n =3 or n = 4.

impulse response The impulse response of the whole system (charge integrator +
filter), which is also the step response of the filter alone, has the following shape

A

| Xmax \/— X =1
with [5° h(z)dz =0, and
_(ntl=z)=" _,
Me)="men * )
r = t/r, 7 the time constant RC. Hereafter h(t/7) = g(t).
The maximum value for k(z) is for:
t
zm=-fi=n+l—\/n+1 (5)

ts is referenced as “the peaking time for a é-Dirac function at the entrance of the whole
system”.
3.2 Output Signal from the Detector
3.2.1 response to a current function I(¢) at the entrance
The effective collected current is then
La(t) = I(t) @ 9(1)

La(t) = [ 1(®)g(t )t (6)

as I(t') is defined for ¢ > 0.



3.2.2 case of a uniform electric field

In this case I(t') has the typical triangular shape, and a direct calculation of I.g from
(6) is straightforward. This opportunity is used in the simulation for all parts of the

apparatus where E is uniform and saves CPU time.
Differentiating (6) with I(¢) = at’ + b (a < 0), the maximum for l.q(t) is obtained

, b(n+1)7

for:

with 7 = RC

—ar
or, introducing the total drift time tp = —(b/a),

tmax ex. (“ + l)tD

Xomax = r  Tt+tp
_(n+1)tD/r
Kmax = 1+tD/T (7)
In practice one has 7 ~ 5 — 10 ns and ¢p =~ 500 ns.
So

This has to be compared with (5) in case of an impulse input. For n = 3 (practical
value), one gets Xiax = 2Zmax, i.€. the maximum of Iq is at {max = 2.

3.2.3 experimental constraints

The time between two crossings in the LHC is foreseen around 15 ns. That means very
fast readout electronics. A peaking time ts = 20 ns is chosen for the time being. Following
the previous estimates that means I.g is maximum at #nac =~ 40 ns. These values have
been used to design a track-and-hold integrator which picks up the Ig(fmax) value and
integrates it for a fixed time AT. This yields a charge AQ which is recorded in an
ADC. Therefore to reproduce the collected charges AQ, it is necessary to simulate the
I(tmax) values of output currents corresponding to the drifting of charged hits (AT is a
constant-free parameter).

Discussion:

As one can notice in (7), the value of ¢y.x depends on the drift time ¢p and on the
value for n. In the case of a general E field, the drift time is no longer a constant as the
drift velocity is not saturated in the experimental conditions (£ around 1 kV/mm).

Nevertheless, for a given typical n value (3 or 4), and for a structure where E is not
too variable (except in tiny regions as described in the following parts), one can fix a tpax
value which is typically

Loax 2 215,

Then the current value Ig(tmax) is tracked.



3.3 Collection Simulation, Main Steps

In order to simulate the current response to a shower developed in the calorimeter, the
hit banks produced by GEANT are used and electric field maps with a good accuracy
(better than 1%) are produced.

3.3.1 define “single charges” from hit information

First of all it is assumed that energies deposited in LAr are uniformly distributed along
corresponding track segments. So each segment of length L; with a deposited energy E; is
divided into equal subsegments of length around £,. The real length £; of each subsegment
is defined by
N; = [-L—] Ty
g T eo . = N"
where the square brackets denote the integer part. Each subsegment carries an energy
E;; = E;/N; and a charge Q;; = E;;/Wicn measured in unit of elementary charge. W, is
the ionising energy in LAr to produce a pair Arte™ (Wis, = 23.6 eV).
The choice for £ is dictated by two opposite constraints: £ has to be as small as
possible to approximate a subsegment as a single charge, and large enough to minimize
CPU time. Without loss of accuracy an £y value of 200 um is chosen.

3.3.2 electric field

For the various designed geometries electric field maps are produced in the folds of the
accordion. The PRIAM package is used to solve a Poisson equation in two dimensions
using a triangular mesh. It provides at each node the electric field components (E;, E,
and E, = 0). Up to now, those numerical values for field components are interpolated to
produce a Cartesian mapping.

Several pitches of this mapping were tested and within a whole accuracy of 1%, a
pitch equal to 100 ym was chosen.

3.3.3 drifting of each “single charge”

As explained in section 3.1, a negative charge Q;; drifts in the opposite direction of the
E field. The resulting current is

i(t) = %’E L5
The drift velocity is a function of the electric field and for |E| greater than 0.1
kV/mm, a linear approximation is adopted (region of interest is around 1 kV/mm):
v =a+ b|E|
with
a = 23 x 107* cm/ns
b = 0.17 x 107* cm?/ns/kV



3.3.4 charge recombination

After ionisation, the fraction of electrons which are really collected depends on both the
number of Arte™ pairs produced and the electric field value. In fact the number of free
electrons produced by a minimum ionising particle (mip) saturates for E field values
greater than 10 kV/cm [6].

A partial charge recombination is possible at lower E field. Two competing processes
are gemellar recombination and columnar recombination.

— The initial (gemellar) recombination might occur at the very beginning of the drift
process: a free electron just created is driven back to an ion and recombines with it.
The Onsager formula [7] which expresses the fraction of e~ yield at low field, contains
a characteristic length (thermalisation length) equal to 28 nm in LAr. Therefore,
in the present simulation, this effect can be neglected after the first step in time for
any drifting charge (Such a step corresponds to at least 9 or 10 pm).

— The columnar recombination is due to the large ion density produced by dE/dz
along the initial track. In such a case, electrons drifting towards the cathode can
be trapped by these ions.

These two processes are competing: at high field the gemellar recombination de-
creases, and with a high ion density the columnar recombination increases. What about
these effects in the present design of the detector? The field value is chosen around 10
kV/cm in the constant regions. The initial ionising track and the main components of its
shower are far from the perpendicular direction with respect to cathodes.

The charge recombination effect can therefore occur mainly at the very beginning
of the drift process in regions of low E field values (gemellar effect in folds). Indeed in
concave parts of folds the E field is only 30% of the nominal constant value Ey, and it
increases by 10% above Ej in the vicinity of convex parts. On top of that one has to take
into account the folding of the initial current from electrodes with the bipolar response
of the electronics. It is easy to check that those recombination effects could affect mainly
the pair production in the vicinity of the leader folds (either concave for the A track or
convex for the C track).

A track /,—-—-\\
B track e =
4 \
/A \ \
C track
Lead

Electrode

Lead



For purely geometric reasons, in a region of very low E field values along an ionising
A track, the number of e~ Ar* pairs is only a small fraction of the corresponding number
for a B track (in the electrode vicinity) or for a C track.

For a B track, in a region of low field below the electrode, a sizeable recombina-
tion effect could affect the collected current. But the net effect of the folding with the
electronics bipolar response is a very poor contribution to the resulting signal anyway.

For a C track, the field in the vicinity of the fold is 10% higher than the nominal
field (Eo = 10 kV/cm) and the corresponding recombination is similar to the one for the
nominal field Ey.

To check this recombination effect, experimental data from measurements in LAr
were used in Monte Carlo simulations [8]. (In these data, charge combination effects -
including columnar effect — on the current are about 20% for an electric field ratio of 0.25
and 1% for a field ratio of 1.1. The columnar effect is certainly very low in our case.
Anyway these extreme effects were used to check the charge combination effect on the
resulting recorded current.)

At the level of the present accuracy of these simulations, no significant effect on
the resulting currents collected in the apparatus can be retained - except maybe a whole
effect on the total collected current less than 0.5%.

3.3.5 numerical calculation of drift currents

Owing to the non-uniform electric field, numerical integration is used along the drift path
in the folds. The elementary drift time is df = 2 ns which corresponds roughly to a
path dl = 10 um which is largely compatible with the electric field map accuracy. In the
vicinity of the electrode, the drift time is corrected according to the remaining distance

dly:
1 diy

dl
The elementary drift currents as given by (1) are then recorded.

dt, = —dt.

3.3.6 output signal

The characteristic triangular shape distribution for the current I() induced by the drifting
charged segment results from a pile-up of partial currents produced by drifting elementary
charges (see Fig. 3.1.1). As explained in section 3.2 this current I(t) is then folded with
the impulse response of the bipolar filter (see Fig. 3.1.2). The maximum of the resulting
I.g current is recorded at tmax = 2i5.

3.3.7 N-tuple from these simulations

Simulation results are stored in an N-tuple which contains for each primary, the total de-
posited energy in LAr and the corresponding total current recorded. The same quantities
are available for each stack.

In order to reproduce the experimental cabling, an electronic cell is defined. For
this, the apparatus is divided into two or three compartments along the incident particle
direction. Each one of those parts is divided in a direction parallel to the folds (pitch of
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2.5 cm) and cells are grouped by sets of three to form readout cells. The N-tuple contains
recorded currents in each readout cell (for a given event a set of 7 x 7 readout cells in
front of the incident particle is kept).

At this level of the simulation, data and Monte Carlo events are analysed in the
same way.

3.3.8 current maps

Tracking each single charge (hit) in an inhomogeneous electric field means a huge amount
of CPU time. So field maps are replaced by current maps which are used to perform
interpolations.

Current maps are produced from electric field maps. Starting from each node of 2
given electric field map, a unit charge drifts and reaches the electrode. The corresponding
induced current is folded with the impulse response of the electronics. A new map,
current map is done with these current values at each node. With a real single charge
Q;; created at a given point, it is then easy to interpolate the current value after charge
normalization. In this way all the currents are obtained without any new tracking.

In the case of electron showers and starting from hit banks as produced by GEANT,
it takes about 2 s/GeV to produce currents with electric field maps and 0.12 s/GeV with
current maps!

Current maps are therefore produced systematically from electric field maps for the
various geometries which are designed.

11



4 Parallel Geometry (1990 Prototype)

4.1 Geometry
4.1.1 general considerations

The parallel geometry accordion calorimeter is simulated with dion shaped absorbers
and electrodes in a bath of LAr. Incident particles travel aténg the Z axis (see Fig. 1)
and hit the calorimeter at Z = 0. Each absorber sheet 2.2 mm thick and is composed
of a 1.8 mm lead core cladded on each side with 0,Jm of glue and 0.1 mm of stainless
steel. The electrode sheets are 0.4 mm thick. Th€y are assumed to be made up of a 0.07
mm copper core cladded with 0.165 mm of kdpton on each side. Both the absorber and
the electrode sheets, which are separated’by a LAr gap of 1.9 mm, have an accordion
fold length of 40.1 mm, 16 bend angles of 90° and a bend radius of curvature of 3 mm
(measured from the center of e to the middle of the sheet thickness). A total
of 48 absorber sheets each 37.5 ide in the Y direction were simulated. The actual
materials used in the simulation“are listed in table 1.

reafont cells are composed of 3 electrodes in X giving a granularity of 2.715
stnps in Y, yielding a total of 16 x 15 readout cells on the calorimeter
dverige thickness of the calorimeter for normal incidence is 25.4 X..

om > o

4.1.2 optimisation of the geometry S

The parameters of the geometry were chosen [5] to optimise the uniformity of the LAr
thickness traversed for normal incidence (see Fig. 2). This method has been quite suc-
cessful in optimising the response uniformity for electrons.

This optimisation is performed using non interacting pseudoparticle (geantinos).
To first approximation, neglecting charge collection effects, the response to electrons is
proportional to the LAr traversed by the electron shower. Therefore local averages of the
geometrical LAr length traversed are related to the response to electrons.

4.2 Field Maps

The electric field in the bending region is calculated using a finite elements method [9].
The domain on which the Poisson equation is solved is a triangular mesh. The triangle
size is less than 100 ym in the bending region (see Fig. 3). A contour plot of the electric
field strength for half a fold is shown on figure 4 : arrows give the direction of the field
from one side to another side of the electrode, their lengths give the amplitude. The
readout electrode separating the two LAr gaps is held at V, = 2 kV while the absorber
sheets are connected to ground. In the constant field region the field strength is 10.53
kV/cm for a gap of 0.19 cm. In the bending region, it ranges from 10 kV /cm in the region
of convex bend to 3 kV/cm in the region of concave bend (see Fig. 5).
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4.3 Results

4.3.1 general considerations

energy measured Unless otherwise mentionned, the charge collection and readout are
not simulated on this chapter on the parallel geometry. The energy obtained from the
Monte Carlo is therefore the energy loss by ionisation in the active LAr. Electromagnetic
showers are simulated down to 10 keV for electrons and photons.

cryostat simulation The material in front of the active part of the calorimeter was
simulated as to reproduce the experimental setup. Table 2 shows the types of “cryostat”
considered. Unless otherwise written, the 1.184 X, type was included in the simulation.
The mean and the rms of the energy loss in the simulated cryostat are shown in figure 6
for different electron energies.

electron data sample Table 3 shows the various Monte Carlo data samples simulated.
Eyt corresponds to the cutoff energy for the electrons and photons below which the
showers simulation is stopped (unless otherwise mentioned, the results presented in this
chapter are for Ecyt = 10 keV). The angles § and ¢ fix the incidence of the electrons on
the calorimeter face. Events are simulated with impact point uniformly distributed over a
readout cell. Not all these data samples have yet been analysed, and work is continuing.

timing The results presented in this chapter were obtained using GEANT version 3.1416
with correction cradle version 3.1407. The simulation took 16.0 s/GeV/cpu on a 4cpu
DN10000 Apollo computer for a 10 keV cut on the electrons and photons. This goes down
to 9.33 s/GeV/cpu (5.22 s/GeV /cpu) for a 100 keV (1 MeV) cut.

4.3.2 electron energy response

leakage In the simulation, the energy escaping the calorimeter was collected to measure
the energy leakage. Figure 7 shows the mean and rms of the leakage energy for electron
showers of various energies and with various cryostats used. It is about 1% for 200 GeV
electron showers, to be compared with the experimental value of < 0.3% [3].

uniformity The Monte Carlo results on the uniformity of the response to electrons has
already been reported [2, 3]. Figure 8 shows the X and Y uniformity of response for 90
GeV electrons expressed in percent of deviation from the average. The broad maximum of
the response in X corresponds to the broad maximum of LAr length traversed in figure 2,
which corresponds to the lack of everlap of the electrode corners. Both the response in X
and Y show a global decrease of about 1% near 0.5, the edge of the readout cell. This is
an effect of the 3x3 cell clustering and disappears when 5x5 cell clusters are used.

Fig. 9 again shows the variation of energy measured as a function of impact point
along the X direction, both for real data and simulation; on the left figure charge collec-
tion simulation is included, which is not the case for the figure on the right. this time
including charge collection simulation. The energy is calculated in a 3x3 cell cluster. A
good agreement is obtained when charge collection with shaping is taken into account,
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mainly in the center of the cell where the bump is well reproduced. It is clear that a
full simulation including charge collection and convolution with electronics is necessary
to fully reproduced data.

The X and Y uniformity of response have been fitted with a 5 parameter even
Fourier serie and a 2 parameter parabola respectively. These parametrisations can then
be used to correct the response on an event-by-event basis. Figure 10 shows the rms
of the uniformity of response in X for various electron energies before and after a XY
energy independent correction. The XY correction do not alter the mean of the energy

distribution.

energy spectrum The energy reconstructed for 90 GeV incident electrons not corrected
for XY variation is shown on Fig. 11; the agreement is good between data and simulation.

The XY correction reduces the width of the energy distribution and improves its
gaussian shape, but does not change its mean. Figure 12 shows an example of an energy
spectrum after XY correction.

sampling fraction The amount of energy deposited in the LAr by an electron shower
depends on the size of the cluster used to measure it as well as on the material in front
of the calorimeter. Figure 13 shows the sampling fraction, defined as the ratio of the
measured energy over the electron energy, for 30 GeV electrons for various cluster sizes
and cryostat thicknesses. A value of 14.68% is found for a 3x3 cluster with a 1.184 X,
thick cryostat in front.

linearity The sampling fraction is found to vary by less than +0.2% for electrons be-
tween 30 and 200 GeV (see Fig. 14).

shower size Information on the longitudinal and lateral shower size can be obtained
by comparing the amount of energy deposited in various stacks (longitudinally) and in
various cells (laterally).

Although the simulation allows the study of the amount of energy in each of the 16
stacks in depth, only the 8:8 (2-compartment) and 5:5:6 (3-compartment) groupings exist
experimentally. Table 4 compares three shower width variables with data [3] for three
types of cryostat simulated and two electron energies.

The first width variable is the ratio of the energy contained in the first 8 stacks of the
calorimeter (2-compartment case) over the total energy, for 3x3 cell clusters. Disagreement
with data is not understood, and cannot be explained easily by allowing more simulated
material in front of the calorimeter.

The other width variables studied are the fraction of 3x3 cell cluster energy in the
first compartment (stacks 1 to 5) and the middle compartment (stacks 6 to 10) for the
3-compartment case. Here we have a good agreement with data for a simulated cryostat
of 1.184 X,.

Laterally the simulation gives a ratio of the 3x3 and 5x5 cluster energy of (93.9840.02)%
and (94.0040.02)% for 30 GeV and 200 GeV electron showers respectively.
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4.3.3 electron energy resolution

The energy resolution for electrons is obtained from the ratio of the mean and the standard
deviation of the electron response, both obtained by fitting a gaussian to the energy
spectrum. Figures 15 and 16 show the resolution obtained for 30 GeV electrons without
and with XY correction respectively, for various cryostat thicknesses and cluster sizes.
The resolution is seen to be improved by the XY correction, while it deteriorates with
increasing cryostat thickness. The difference in resolution between 3x3 and bigger cell
clusters is also evident, which is not the case for the testbeam data [3]. The uncorrected
energy resolution obtained for 5x5 cell clusters for 30 GeV electron showers is found to be
(1.56+0.02)%, (1.60+0.09)% and (1.84%)% for electrons and photons simulation down to
10 keV, 100 keV and 1 MeV respectively.

Figure 17 shows the energy resolution for electrons of energy between 30 and 200
GeV with 1.184 X, cryostat and 3x3 cell cluster. A XY energy independent correction
was applied. The energy dependence is fitted to

LA
E E

where the sampling term (a/v/E) and the constant term (b) are added in quadrature.
No noise term was included since electronic noise was not simulated. The fit yields
a = (8.61+0.15)% GeV'/? and b = (0.234 £ 0.075)%. The conditions used to obtain this
result are believed to be similar to the experimental conditions leading to the result quoted
in [3]. The simulated resolution is approximately 10% better than the experimental one.
Values of a and b obtained for other simulated conditions are listed in table 5

The energy resolution as a function of the 8 angle of incidence (for ¢=0, see Fig. 1)
was also studied. Figure 18 shows the resolution for 90 GeV electrons for § between —20
and 80 mrad for 3x3 and 5x5 cell clusters. We notice that the resolution improves slightly
for # > 0 before worsening considerably for 6 > 60 mrad.

The XY dependence of the response decreases away from #, which could account
for the improved uncorrected resolution. With increasing @ angle, the change in sampling
fraction and frequency worsens the resolution. An optimum resolution may exist for an
angle between 20 and 50 mrad, if XY correction is not used. It is worth noting that the
XY corection depends on #, which could make XY correction difficult for non normal
incidence electrons.

4.3.4 electron position reconstruction

The electron shower position can be obtained by computing the first moment of the energy
distribution in a cluster. This can then be compared, on an event by event basis, with the
electron impact point in order to obtain the mean offset and the resolution of the position
reconstruction.

Along X, the correlation between the reconstructed shower position and the electron
impact point is found to be practically linear (see Fig. 19). The width of their difference
gives the position resolution in X. The reconstructed shower position is biased near cell
edges due to the fact that odd number of cells are used in clustering in X (and Y). This
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effect, stronger for small clusters, produces a slope of 0.938+0.002 for 3x3 clusters (as
shown on Fig. 19) and 0.986+0.003 for 7x7 clusters.

Along Y, the reconstructed shower position must be corrected as indicated in [2, 3]
before comparing it with the electron impact point. Figure 19 shows the uncorrected
correlation between the reconstructed Y position and the electron Y impact for 90 GeV
electrons. The clustering effect at cell edges is also visible.

For normal incidence 90 GeV electrons and using only the first of two samplings in
depth (that is using only 8 stacks), the simulation gives

ox = (0.45 £ 0.01) mm

oy = (0.37 £ 0.01) mm

to be compared with the experimental results [3] (0.394 £ 0.002) mm and (0.505 + 0.001)
mm respectively. The difference between data and Monte Carlo (in particular the fact
that ox < oy is not reproduced) is not yet understood.

While the number of stacks used for clustering is limited to the electrode fabrication
for the experimental data, any number of stacks (up to 16) can be used in the simulation.
Figures 20 and 21 show the X and Y position resolution respectively, for 90 GeV normal
incidence electrons using a variable number of stacks in depth for clustering. While the
Y position resolution is found to improve with increasing number of stacks used in depth
with small dependence on the cluster size used, the X resolution reaches its minimum for
about 6 stacks in the case of 3x3 clustering, corresponding to the location where about
half the shower energy is deposited. This behaviour disappears if the cluster dimension in
Y is reduced or if the cluster dimension in X is increased. In both cases, the X resolution
does not deteriorate much when-more then half the shower energy is included.

These results suggest that a 3x1 cluster might be favorable to measure the X position
of a 90 GeV electron shower if more than 6 stacks are used for the position reconstruction.

Also of interest is the offset or bias in the reconstruction of the shower. No bias is
found in Y as expected. Figure 22 shows the offset in the reconstruction of the X position
of 90 and 200 GeV electron showers as a function of the number of stacks used in depth.
The effect of the accordion structure is evident. It is important to note that in this case
the predicted effect is still of the order of the resolution if up to 8 stacks are used. The
offset is found to be independent of the cluster size, but varies slightly with energy as the
shower profile changes.

The knowledge of such a systematic offset in the reconstruction of the X position of
electron showers is of course crucial when matching the calorimeter result to other (inner)
detectors in ATLAS. It might be better to stop the first compartment near an edge of the
kapton sheet, which corresponds to half stacks in figure 22.

I
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[ material [ simulated material | density (g/cm®) | rad length (cm) ||
lead lead 11.35] 0.56
copper copper 8.96 1.43
stainless steel || iron 7.87 1.76
aluminium aluminium 2.70 8.90
liquid argon || liquid argon 1.40 13.9
glue plexiglass (CsHsO2) 1.18 34.1
kapton plexiglass (CsHgO3) 1.18 34.1

Table 1: Simulated materials
[ material thickness (cm)

aluminium 2.0 2.0 2.0 2.0

vacuum 27 2.7 2.7 2.7

iron 0.3 0.3 0.3 0.3

liquid argon 1.0 1.0 1.0 1.0

air 15.0 15.0 15.0 15.0

liquid argon 5.0 10.0 15.0 20.0

| total [ 26.0=0.826X. | 31.0=1.184X | 36.0=1.543X, [ 41.0=1.901X, |

17

Table 2: Four different types of cryostat considered. The material layers appear in the
order they are simulated.




energy (GeV) | cryostat (X) [ Ecyt (keV) | 8 (mrad) | ¢ (deg) | events ||

30 0.826 10 0 0 500
30 1.184 10 0 0 1300
30 1.543 10 0 0| 1300
30 1.901 10 0 0 650
30 1.184 100 0 0| 1300
30 1.184 1000 0 0| 1600
90 0.826 10 0 0] 400
90 1.184 10 0 0 700
90 1.543 10 0 0 700
90 1.184 100 0 0 100
90 1.184 10 20 0 500
90 1.184 10 -10 0] 500
90 1.184 10 10 0 500
90 1.184 10 20 0] 500
90 1.184 10 30 0 500
90 1.184 10 40 0 500
90 1.184 10 50 0] 500
90 1.184 10 60 0| 500
90 1.184 10 70 0 500
90 1.184 10 80 0] 500
90 1.184 10 100 0 500
90 1.184 10 150 0] 500
90 1.184 10 200 0 500
90 1.184 10 250 0 500
90 1.184 10 300 0 500
90 1.184 10 350 0 500
90 1.184 10 50 90 500
90 1.184 10 100 90 500
90 1.184 10 150 90 500
90 1.184 10 200 90 500
90 1.184 10 250 90 500
90 1.184 10 300 90 500
90 1.184 10 350 90 500
- 150 0.826 10 0 0 400
150 1.184 10 0 0 400
150 | 1.543 10 0 0| 400
200 0.826 10 0 0 100
200 1.184 10 0 0 300
200 1.543 10 0 0 300

Table 3: GEANT Monte Carlo samples simulated. See text.
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energy || cryostat 2-compEE(£mnt) 3-con_1pEE(front) 3-comp ggm'ddle)

(GeV) | (X0) (%) (%) (%)

30 0.826 88.7+0.3 57.1+0.4 39.1+0.4 |
1.184 89.6+0.2 50.840.3 36.7+0.2
1.543 90.7+0.1 63.2+0.3 33.7+£0.2
da.ta.; =% 59.= 37=.

200 0.826 78.8+0.7 39.6+0.8 52.0+0.5
1.184 80.6+0.4 42.620.5 50.0+0.3
1.543 82.4+0.4 45.9%0.5 47.5+0.3
data 83. 45. 49.

Table 4: Comparison of simulated shower width variables with data. See text.

3x3 5x5 <7

0.826 X, 8.89 £0.21% 8.17 £ 0.41% 7.92 +0.44%
0.00 + 0.24% | 0.413 £ 0.081% | 0.524 + 0.067%
1.184 X, 8.61 £0.15% 7.75 £ 0.16% 7.86 £+ 0.28%
0.234 £ 0.075% | 0.467 +0.041% | 0.512 + 0.045%
1.543 X, 9.16 + 0.18% 8.72 + 0.27% 8.61 +£0.27%
0.00 + 0.39% | 0.421 £+ 0.057% | 0.413 + 0.057%

Table 5: Sampling (in GeV'/?) and constant terms obtained for various cluster sizes and
cryostat thicknesses. Energy independent XY corrections were applied.
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Figure 1: View of the calorimeter in the X — Z plane. The Z axis runs from left to
right with Z = 0 at the face. The X axis runs upward. The horizontal line represents
a noninteracting particle incident at X = 0 in the fourth readout cell in X. Polar
coordinates are defined as usual: ¢ is the angle in the XY plane measured clockwise from
the X axis and @ is the angle to the positive Z axis.
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argon radiation lengths
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Figure 2: The bottom figure shows the LAr thickness traversed, in radiation length, as a
function of X in cell units. The dotted lines show a £5% band. From the top figure we
see that X = 0 corresponds to the overlap of the absorber corners. The electrodes are
also shown. Both figures have the same X scale.
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Figure 4: Electric field in a bend from one side to the other side of the electrode. Arrows
represent the vector electric field; their length is proportional to the electric field strength.
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Figure 6: Mean and rms energy loss in the different cryostat considered for four different
electron energies.
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Figure 7: Mean and rms leakage energy for four different electron energies and various
cryostats used.
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Figure 10: Rms of response in X for various electron energies before and after a XY
energy independent correction.
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Figure 12: Energy distribution for 90 GeV electrons after XY correction. A cryostat
1.184X, thick has been simulated and 3x3 cell clusters were used. The abscissa shows the
energy deposited in the LAr.

30GeV electrons
£
'§ E g:g
g : 9
& 184 & 7x7
[~
£
a &
E 16+ a .
o L a
| |
15.8 = .
]
152
sl o .
L ]
144 | »
1 e | 1 i 1 i
" s 1 1.2 1.4 s s 5
cryostot thickness (rod length)

Figure 13: Sampling fraction measured for 30 GeV electrons for various cluster sizes and
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Figure 15: Energy resolution for 30 GeV electrons without XY corrections, for various
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Figure 16: Energy resolution for 30 GeV electrons with XY corrections, for various
cryostat thicknesses and cluster sizes.

energy resolution

a/u(%)

3 x 3 clustering
1.184 Xo cryostot
90GeY X-Y correction used

2 _ sompling term 8.61 £ 0.15 %
i constant term 0.234 £ 0.075 %

T

4

1.5 "‘_
- “““‘
12 S
L '-._“
3 - -
o
a8 :- - "'-'-—__
'''' ]
0.4
] 1 [l e | 1
0 50 100 150 200

electron energy (GeV)
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X and 2.5 cm in Y. Note the clustering effect near cell edges.
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used.
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5 Cylindrical Geometries (1991 Prototype)

5.1 Geometry

The two different geometries are described in details in [4] The first one, called projective
geometry, is the simplest projective geometry we can conceive. Absorber plates are dis-
played all around the beam line with the folds parallel to it. The chosen angle, 0.341°,
corresponds to a value of 1.9 mm of LAr gap at 20 cm from the entrance face of the
calorimeter. This corresponds roughly to the maximum of the shower. The thickness of
the LAr gap increases along the depth of the device (see Fig. 23). As a consequence, the
electric field in the gap decreases. Therefore the energy collected will decrease with depth
for a given time of collection.

It is possible to keep the LAr gap constant by adding an increasing thickness of a
low Z material glued on absorber plates. This geometry with compensated gap is called
compensated geometry (see Fig. 24). For the simulation results presented in this chapter
on cylindrical geometries, the absorber plates is approximated by a 2.2 mm thick material,
composed of an homogeneous mixture of 1.8 mm lead, 0.2 mm steel and 0.2 mm prepreg.
It has been checked, in the case of parallel geometry, that results are equivalent with or
without full cladding. The advantage of this approximation is a gain in computing time.
Nevertheless, the simulation takes into account the cladding of the 2.2 mm thick absorber
with prepreg layer of increasing thickness, in the case of the compensated geometry.

5.2 Field Maps

In the case of opening geometry, the LAr gap is increasing with depth. Since the voltage
applied on the electrode is constant, the electric field strength decreases with depth in
the calorimeter. Outside bends the LAr gap varies from 1.47 mm to 2.36 mm. The elec-
tric field is computed in each bends and a mean value is given in each sligthly opening
straigth sections. Figure 25 shows the variation of the field strength in the middle of a
bend, respectively at the inner, middle and outer radius of the calorimeter. The varia-
tion of the maximum value of the field in these three different positions is about 30%.
The computation of the field strength in the compensated geometry is equivalent to the
computation in a parallel geometry since the gap remains constant. It is 1.43 mm thick,
compared to 1.9 mm in the parallel geometry, giving a field around 30% bigger (for the
same applied tension).

5.3 Timing

Hits, as defined in chapter 3, are recorded onto cartridge for further charge collection
simulation. A 90 GeV shower represents 4.5 Mbytes of information and requires 500 s
processing time on HP730.

5.4 Results

Simulation is performed by sending electrons of fixed energy at normal incidence to the
calorimeter face to cover a full readout cell which corresponds to three electrodes (3 x

34



0.341°). Unless otherwise mentioned, charge collection simulation is performed for the
results presented in this chapter on cylindrical geometries. The final energy is given by
the energy contained in a 3x3 cell cluster as for testbeam data. The ratio of the energy
measured in 3x3 cell clusters over the energy measured in 5x5 cell clusters is approximately
95%; simulation is in good agreement with this experimental result. As the impact point
of an electron varies, there is a variation of absorber and LAr traversed by the shower
and thus a variation of energy response. It is expected that this variation is bigger for the
cylindrical geometry than for the parallel one because the gap is opening. This is also true
for the compensated geometry. Figures 26 and 27 show this variation both for opening and
compensated geometries. The periodicity is very well reproduced by the simulation. The
amplitude is approximately £2% and is better simulated in the compensated geometry
than in the opening geometry. It is possible that the prototype calorimeter was slightly
tilted during the data taking. This can explain the relatively smaller modulation.

To compare simulation with testbeam data for the case of the dependance of the
energy as a function of the shower depth, it is assumed that the total amount of material
in front of the calorimeter is 1.18 X, as it has been measured for parallel geometry. The
opening geometry is sampled in three sections in depth while the compensated one is
sampled in two sections only. The total charge measured in the opening gap calorime-
ter shows some dependance on the depth at which the shower develops. This depth is
parametrized by the fraction of the energy deposited in the front or the back section of
the three compartments. Figures 28 and 29 show the total energy normalized to its mean
value for 90 GeV electrons as a function of these two fractions. The agreement with
data is relatively good except when the shower is developed very early. Either GEANT
has some problem to reproduce ends of shower or the amount of front material is badly
estimated. By comparison, curves with black stars represent the signal when the total
ionisation signal is taken without electronics convolution. This illustrates very well the
effect of opening gap. In the compensated geometry the variation of the collected energy
as a function of the depth is smaller as it is shown on figure 30. The agreement with simu-
lation is fairly good. In this case the total charge is not shown, since the time distribution
of the ionisation does not depend on the depth.
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Figure 23: Section of the simulated projective geometry. Note that the accordion angles
are constant and that the LAr gap increases with depth. A 100 GeV electron shower is
also simulated. Only absorber sheets and charged tracks down to 10 MeV are shown.

Figure 24: Section of the simulated compensated geometry. Note that the accordion
angles are constant but that the absorber thickness increase with depth, keeping the LAr
gap constant.
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Figure 26: Variation of the energy response of the calorimeter normalized to the beam
energy for 90 GeV electrons as a function of the impact point in the X direction (in
readout cell units) for the opening geometry.
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Figure 27: As for Fig. 19 but for the compensated geometry.
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integration (no convolution with electronic response).
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Figure 29: As for Fig. 21 but for the back compartment.
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6 Pointing Geometry (1992 Prototype)

In this chapter, the simulated pointing geometry will be presented, Clearly, most of our
simulation efforts are now on this geometry and work is in progress. Results will be
presented in a subsequent note.

6.1 Geometry
6.1.1 analytical method

The pointing geometry is obtained by requiring that the thickness of the LAr gaps and of
the absorber sheets be constant. This is achieved by varying the angle of the accordion
folds along the depth of the calorimeter (see Fig. 31).

The parameters of such an accordion geometry can be obtained by first considering
the family of curves separated by a distance (measured perpendicular to the tangent at
one point) independent of p, the polar radius from the origin. Two such curves are shown
below, starting at an inner radius p, and separated by a rotation of angle 8 about the
origin O.

Y/p.

X/P.

In general, the polar coordinate representation of any curve can be expressed in the
form

pd_i = fanfo~ @) =cokf (9)

where ¢ = ¢(p) is the azimuthal angle coordinate of point P, p is its polar radius co-
ordinate, a is the azimuthal angle of the curve’s tangent at point P, and § is the angle
between the tangent and the ¢-axis at point P.
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For small angular rotation 3 between two such curves, the distance separating them
at point P is given by

€ = PBpsiné = Bp, (10)
Requiring € to be a constant creates a relation between p and é which allows to obtain

the function ¢(p) desired. Differentiating equation 10 gives
1dp
pdé
which can be used along with equation 9 to obtain

do _ (,26) (Lde) _ _ o0
i~ (rg) (G3) =

with the solution, satisfying ¢ =0 at § = 7/2 (or p = po),

= —cotd

¢S=cot6+6-%.

From equation 10 we obtain
2
cotd = (ﬁ) -1
Po

d(p) = qu-mmGj. (11)

which finally gives

o p
The radius of curvature of this curve, R(p), can be obtained from
p (B +0Y"
p* +2p% - pp”
where
P S
= =
(%) -1
= &p _ p
~ de¢? p)\2 2
[(8)"-1]
We then obtain

R(p) = VP? = po’.

These results were first presented by O. Gildemeister [10].

To produce an absorber sheet with the pointing accordion structure, the curve ob-
tained from equation 11 is associated to the mid thickness or neutral fibre of the absorber
sheet and is folded over at various ¢ values.

The pointing geometry is obtained by requiring the outside of the absorber sheet
to be tangent to a ¢-wedge of a given opening angle (this constraint allows also the
fabrication of absorber sheets that can rest on all corners when put on a flat surface),
taking into account that the folds are arcs of circle with a given radius of curvature.
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In the case of the EM accordion, the length of the curve between the folds is small
and is approximated by a straight line (this causes a slightly variable gap - £1% - along
each fold). Note that this approximation is not valid in the case of the hadronic accordion

calorimeter.
The geometrical parameters of the absorber sheets are then determined by

the opening angle of the ¢-wedge containing the sheet;

the number of absorber sheets in a full circle (27/3);

the gap width between the neutral fibre of two adjacent absorber sheets (¢);

the absorber thickness;

the radius of curvature of the absorber sheet corners;

the inner radius (p,).

The electrode sheets are then produced using the same neutral fibre curve.

The optimisation of these parameters is obtained by requiring that the thickness of
LAr traversed radially shows best uniformity in ¢.

The geometrical parameters corresponding to the 1992 pointing accordion prototype
absorber sheets are shown in table 6, where (p¢, ¢c) are the coordinates of the center of
curvature of the accordion corners, { is the angle in the corners, p,, are the polar radius
coordinates of the neutral fibre of the sheets at ¢ = 0, and X is the accumulated developped
length of the neutral fibre of the sheets.

Figures 32 and 33 show the corresponding LAr and total radiation length for normal
incidence (at 7 = 0) as a function of ¢ of impact, which are found to be of very similar
shape as for the cartesian geometry.

6.1.2 iterative method

From another point of view the problem of a constant gap is directly settled as follows:
try to define an accordion structure inside a cone (pointing geometry) with the following
characteristics:

o The curvature centre for the neutral fibre C; is known for the corner 1.
e The radius of curvature is fixed (ro = 3 mm here).
o The next foil (F’) is deduced from (F) by a plane rotation R(O, B).

At this level, there remains one degree of freedom for determining the next curvature
centre C;: for example the angle §; of the neutral fibre with respect to the direction of
the outside bisector N.
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Lead Foil
Neutral Fibre

A constraint, such as a constant gap between the two foils (F) and (F’), fixes this
parameter. In fact, as pointed out previously, the gap is not exactly constant in the case
of straight lines joining the corners. So, one has to choose the point M along the fold
where the gap value is put at a fixed value. Obviously such a point is chosen with the
same geometrical definition for every next fold.

Then, if pp(61) and ¢p(8,) are the polar coordinates of M in the fold 1, the constraint

is written as:

flpm(81), om(81)] =0 <= F(6,) =0.

This last equation is solved to get é;. Then one gets the curvature centre C;(p; and ;).
A new point M (in between C; and Cs) is used in the same way and the constraint yields
the parameter 6; for the fold 2. The total accordion structure is obtained by iteration.
This iterative method exhibits a priori two advantages:

a) It is possible to vary the geometrical definition of the auxiliary point M to minimize
the gap variation along folds.

b) It is easy to impose another type of constraint such as ‘radial gap thickness is
constant’; again this can be put in mean only along a given fold (for example, this
constraint is written in the vicinity of the bisector O.).

Concerning the first point, it turns out that the best choice for M is the middle of
the fold (i.e. slightly above or below the bisector according to the slope sign of the fold).
The corresponding set of § angles which define the fold positions is then exactly the one
obtained with the analytical method described above. (By the way, the iterative method
specifies the place along the folds where the constant value for the gap is imposed and
maintained with the approximation of a gap with a null curvature.)

Concerning the second point (b), taking into account the fact that the direction
of particles in a shower is rather in a radial direction than systematically perpendicular
with respect to each successive electrode, one can try to investigate a new folding with a
constraint on the radial thickness in LAr. The iterative method yields in this case a new
set of § angles which can be used in comparative simulation methods.
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illustration of the iterative method Consider the expression of the constraint at the
level of a given n-fold between the two curvature centres C, and C,4;. The O, axis is the
bisector of the cone containing a folded foil. As explained above, for a chosen M point,
its polar coordinates are functions of the angle &, : pm(85) and ¢um(6s).

Neutral Fibre
-~ after rotation

M 7 L Ar Neutral Fibre

A B Bisector %

The rotation R(O, B) of the neutral fibre of a foil defines a LAr cell and (MM’) are
corresponding points. As a constraint one writes (case of a constant gap here):

MH = MM'sin § = h, where h is a given constant.

From very simple geometry, MM’ and 8 can be expressed using the known parameters
and the §, angle. Let &' = 7 /2 — §,, then:

o MM’ = 2pysin 3/2
e 0 calculation:

= - (em+8/2)

AﬁB=x—(ﬁ+a')=g—a'+m+ﬁ/2

e <« O
I

So the constraint equation is:
2pra(62)sin B/2 sin(bn + pu(8n) + B/2) = b

This equation yields 8, which is determined very quickly by dichotomy.

Remark: The exact expressions for pm(6,) and ¢p(6,) depend on the choice for the
M position. And, in the same way, one has to take care of the exact position of M with
respect to the intersection A of the bisector O, with each fold. For example, if M is the
middle of the fold, it is above (below) A for a fold with positive (negative) slope. For
various possible choices of M (as explained at the end of 6.1.2), this is taken into account
in detail in the previous calculation of 6.
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6.1.3 pseudorapidity stru < O-':-é-;"@__—-""

The absorber sheets mgaking the 1992 pointing prototype-4re made of a tetal thickness

of 1.8 mm of lead @.. of glue and 0.4 mm o nless steel fof n < 0.7065. For

steel, adding up to the same geometrical thickness § mm but with a smaller radiation

length thickness. This choice is meant to help recover a good energy resolution at high 7.
Figure 34 shows the total radiation length seen from the vertex as a function of the

pseudorapidity. The cloud of points at a given 5 are produced by a uniform distribution
in ¢ (see Fig. 33 for the n = 0 case). The discontinuity at 5 = 0.7065 is clearly seen.

6.2 Note on the Coding of the Pointing Geometry

In GEANT, a complex volume can often be simply represented if there exists a symmetry
leading to repetition of parts of the volume, as in the case of a cube made up of smaller
identical cubes, or a cylinder made up of identical ¢ or p slices. In the case of the accordion
with pointing geometry, the ¢ symmetry that exists cannot be used in the current versions
of GEANT. Furthermore, no structures can be repeated in p since the accordion angle
varies with p. No repetitions are present in 7 either.

Therefore, in the case of the accordion, a conventional use of GEANT leads to the
creation of a large mother volume filled with LAr in which every daughter volumes making
all the absorber and electrode sheets (18 corners and 17 straight sections each!) have to
be positioned. This results in a mother volume filled with thousands of daughter volumes
and directly leads to a very slow volume search by the GEANT tracking.

Another problem arises when we want the LAr gap number in which a hit is produced
(to associate the hit to a given cell). Since a hit in the LAr is in the mother volume,
GEANT does not know which gap this corresponds to.

These two problems were solved using rather obscure GEANT features, thanks to
comments and advice from Michel Maire [11].

6.2.1 GSUNEA and GUNEAR

The slow tracking of GEANT in the case of a mother volume containing a large number
of daughters comes from the fact that each time GEANT requires to know in which
daughter it is or will be tracking, it searches systematically through the whole list of
daughter volumes.

Clearly, at any step of tracking, the coordinates and direction cosines of the current
tracking step is known. From this and the knowledge of the geometry, a restricted list
of candidate daughter volumes to be searched for can be built. GEANT can then be
instructed to search only through that list, speeding up considerably the execution of
the code. This can be done with the use of the routine GSUNEA and GUNEAR in the
following way:

- At initialisation phase, you must tell GEANT that you want to use a user volume
search for the volume, say, CALO:
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ISEARC=1 ! could be any number>0. User defined, associated to CALD
CALL GSUNEA(’CALO’ ,ISEARC)

- Then you must providle GEANT with a user search routine. It must have the fol-
lowing format:

SUBROUTINE GUNEAR(ISEARC,ICALL,X,JNEAR)

REREERRFERERE R R AR R TR R R AR R R R RSk k ke ke k ok k%
produce a list of volumes to search for when in volume ISEARC
input

ISEARC number associated to the volume in which the user
search is used (set by user with GSUNEA)

ICALL type of question the list of volumes must answer
1 --> GMEDIA like call (where am I?)
2 --> GNEXT 1like call (where can I go?)

X X(1),X(2),X(3) position
X(4),X(5),X(6) direction cosines

JNEAR  Pointer to the volume list bank
The list of volumes to search to answer the question
defined by ICALL contains the numbers corresponding
to the volumes to search, the first in the list will
be search first. These volume numbers correspond to
the rank of position (GSPOS) of the daughter volumes
in the mother volume associated to ISEARC (it is in
fact the link number of the daughter volume bank).
The list of volumes must be entered as follows:

IQ(JNEAR+1) = N number of volumes in the list
IQ(JINEAR+1+1) = volume number of the 1st volume in list
IQ(JNEAR+1+2) = volume number of the 2nd volume in list

IQ(JNEAR+14N) = volume number of the Nth volume in list

*k% WARNING #%x

Using GUNEAR bypasses GEANT volume search. Your user search is
your responsability. If the list of volumes to search you give
is incomplete, you will obtain wrong results without warning...
The rightness of your algorithm can be verified by checking that
the seed number after the simulation of a shower is the same
with and without the user search.

aoaoocooacao0ao0acgacgoo0000000000000000000000000000O0
# % F R KRR E R R R OR R R R R R R R R R RN R R KRR KRR KRR RN
LA S B S A T I TN B CHEE IR R R R T Y R SR I S R S S S A )

##% DISCLAIMER !! #x*
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C * As far as I know, this is not documented anywhere. *
C =* I have not heard of anybody using GUNEAR. *
C * My understanding of this routine might not be completely correct.*
c * *
C * The existence of this routine was mentioned to me by Michel *
C * Maire... many thanks. *
c = *
C * Michel Lefebvre March 1992 *
C * *
M S e s
c
C make sure you have the GEANT common block with IQ array...
+SEQ,GCBANK.
c

INTEGER MYLIST(100)
C

C here make a list of volume numbers using ISEARC, ICALL, X
C remember this routine will be called VERY often

c
N=...
MYLIST(1 to N) = .....
o
C stuff GEANT with it
c
DO 10 I=1,N
IQ(JINEAR+1+I)=MYLIST(I)
10  CONTINUE
IQ(JINEAR+1)=N
c
END

6.2.2 UPWGHT in COMMON/GCTRAK/

The LAr gap number associated to a hit (needed to associate hits to a given accordion
cell) can in principle be obtained, at any tracking step, from the coordinates of the step
in the LAr mother volume. This leads to a rather complicated mathematical treatment
due to the nontrivial accordion structure.

A solution consists in making use of the number of a daughter volume exited by the
tracking of a particle. During tracking, in subroutine GUSTEP when a particle leaves an
absorber or an electrode volume, the corresponding daugher volume number (along with
the direction cosines or the coordinates in the case of absorber only) easily provides the
LAr gap number where the tracking will now proceed.

If no interactions were to occur in the LAr gap, this gap number could be stored in
a user variable and used when energy is deposited in a subsequent step. Since interactions
do occur in LAr, the tracking can branch off. The gap number would then be lost when
tracking resumes at that point.
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An elegant solution to this problem consists in storing the LAr gap number obtained
on exit of a daughter volume in the user word UPWGHT in COMMON/GCTRAK/. If
the tracking branches off, the LAr gap number (along with the tracking parameters) is
pushed down the particle stack. When energy is deposited in a subsequent step, the COM-
MON/GCTRAK/ is refreshed by GEANT from the particle stack, with the appropriate
LAr gap number in UPWGHT.
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Opening angle of ¢-wedge containing the sheet (degrees) 1.160
Number of absorber sheets in a full circle (27 /5) 960
Gap width between the neutral fibre of two adjacent sheets (cm) |  0.66
Absorber sheet thickness (cm) 0.24
Radius of curvature of the absorber sheet corners (cm) 0.3
Inner radius (cm) 134.85

Pc ¢C E Pm z
(cm) | (degrees) | (degrees) | (cm) | (cm)
134.85 -0.128 134.85 | 0.000

136.50 -0.404 95.292 | 137.97 | 2.110
139.47 0.407 92.632 | 140.91 | 6.065
142.39 -0.411 90.194 | 143.81 | 10.025
145.27 0.414 87.935 | 146.67 | 13.996
148.11 -0.418 85.830 | 149.50 | 17.984
150.92 0.421 83.860 | 152.30 | 21.992
153.71 -0.423 82.008 | 155.07 | 26.024
156.46 0.426 80.263 | 157.81 | 30.082

9 || 159.20 -0.429 78.611 | 160.54 | 34.168
10 || 161.92 0.431 77.045 | 163.25 | 38.285
11 || 164.61 -0.434 75.556 | 165.94 | 42.433
12 || 167.30 0.436 74.138 | 168.62 | 46.615
13 || 169.97 -0.438 72.784 | 171.28 | 50.832
14 || 172.62 0.441 71.490 | 173.93 | 55.084
15 || 175.27 -0.443 70.250 | 176.57 | 59.373
16 || 177.90 0.445 69.088 | 179.36 | 63.699
17 || 179.36 -0.096 65.998

WD =D

Table 6: 1992 pointing prototype geometrical parameters. See text.
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Figure 31: Section of the simulated pointing geometry. Note that the accordion angles
vary in order to keep the LAr gap constant. A 100 GeV electron shower is also simulated.
Only absorber sheets and charged tracks down to 10 MeV are shown.

1992 prototype

meon= 1901 rd rms= 0.038

21

argon radiation lengths

e Ao

18

—
phi impact point on cell (readout cell units)

Figure 32: LAr thickness traversed (at n = 0), in radiation length, as a function of ¢ in
cell units (since one cell is made of 3 absorber sheets, the span here is £1/6 between two
adjacent sheets). The dotted lines show a £5% band.
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Figure 33: Total thickness traversed (at n = 0), in radiation length, as a function of ¢ in
cell units (since one cell is made of 3 absorber sheets, the span here is £1/6 between two
adjacent sheets). The dotted lines show a +5% band.
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Figure 34: Total radiation length seen from the vertex of the pointing prototype (in the
case of a colliding been setup) as a function of the pseudorapidity 5. The many points
at a given 7 are produced by a uniform distribution in ¢. The 75 range covers the part of
the prototype equipped with readout cells. The discontinuity at n = 0.7065 caused by a
change in the absorber material composition is clearly seen.
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7 Last Remark and Acknowledgements

A summary of results from GEANT simulation of the 1990 (cartesian) and 1991 (cylin-
drical) EM accordion calorimeter prototype is presented in this note, including detailled
simulation of the charge drift and collection. Comparison with experimental data is also

presented in many cases.
The geometry of the 1992 (pointing) EM accordion calorimeter prototype is de-
scribed. Simulation efforts are now in progress and the results will be part of a subsequent

note.
Comments on this note would be appreciated (they can be sent to LFBQCERNVM).

The authors would like to thank Guy Le Meur (LAL, Orsay) and Michel Maire
(LAPP, Annecy) for their very helpful contributions.
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