
Trying out SANs
Structured Athena-aware Ntuples

LAPP, 20 April 2007
Michel Lefebvre

Physics and Astronomy
University of Victoria

British Columbia, Canada

Personal notes and impressions
Comments, advice more than welcome
Updated version of talk

Disclaimer:
I have not tried everything!
I do not understand everything!

Laboratoire d’Annecy-le-
vieux de physique des
particules, France

2007/04/20 trying out SANs 1

2007/04/20 trying out SANs 2

Introduction
Analyzing reconstructed events using Athena

perform analysis using Athena (from ESD or AOD)
• can use tags or Athena-aware Ntuples (AAN) to select events
• can produce analysis dependent Ntuples (EventView)

– continue analysis using Root macros

Analyzing reconstructed events using Root
using Athena, produce Ntuples containing the reconstruction
information

• combined Ntuples (CBNT)
• Athena-aware Ntuples (AAN)
• Structured Athena-aware Ntuples (SAN)

perform analysis using Root macros
AAN (including SAN) allow back navigation (to AOD, ESD,...) when
used as tag

2007/04/20 trying out SANs 3

Introduction
Ntuple formats

CBNT, old AAN, and EventView ntuples (AAN)
• “flat” format, that is containing int, float, etc.

– easy to deal with in Root
– but Root macro code very different from Athena analysis code

SAN
• “structured” format, that is containing classes

– needs “dictionary” to teach Root about the classes
– but Root macro code very similar to (ideally the same as) Athena code

AOD
an AOD file contains a persistent version of the AOD events: pAOD

• optimized for data storage and data access speed
• has no methods needed by the user for event analysis
• this is what you see if you try to access an AOD file directly with Root

in Athena, a transient version of the AOD event is available
• this is what you access in your Athena code

2007/04/20 trying out SANs 4

SAN concept
add the transient AOD objects to a structured Root tree to
provide Root access to the AOD

transient AOD objects is what you access in an Athena analysis
need to provide “Root version” of these objects

• User:: namespace classes
•extra maintenance!

same functionalities and same interface in Root and in Athena

AOD

persistent
version of

AOD

transient
version of

AOD

AOD files

StoreGate
“Athena Classes”

SAN
“Root Classes”

atlas/PhysicsAnalysis/JetTagging
/JetTagEvent/JetTagEvent/ParticleJet.h

atlas/PhysicsAnalysis/AnalysisCommon/
UserAnalysisEvent/UserAnalysisEvent/ParticleJet.h

2007/04/20 trying out SANs 5

Analysis models

AOD Athena
CBNT_Athena CBNT Root macros user

output

AOD Athena
EventView AAN Root macros user

output

AOD Athena
StructuredAAN SAN Root macros user

output

AOD Athena
AnalysisSkeleton

user
output

similar code

ideally, identical

Athenatag, AAN,SAN

AOD
ESD

UserAnalysisEvent EDM
The User namespace was implemented for SAN

• here doxygen from 12.0.5: http://atldbdev01.cern.ch:20080/swbrowser/current.html

2007/04/20 trying out SANs 6

TObject

hlv() returns a TLorentzVector

http://atldbdev01.cern.ch:20080/swbrowser/current.html

2007/04/20 trying out SANs 7

Getting started
Start from the SAN TWiki page

https://twiki.cern.ch/twiki/bin/view/Atlas/SAN

I used Athena 12.0.6 on ccali
following tags used (token from klog.krb on cern.ch)

• PhysicsAnalysis/AnalysisCommon/UserAnalysis-00-09-10-14
• PhysicsAnalysis/AnalysisCommon/UserAnalysisUtils-00-01-01-07
• PhysicsAnalysis/AnalysisCommon/ParticleBuilderOptions-00-00-28-07

following W→eν AOD used (thanks to Thibault Guillemin)
• trig1_misal1_csc11.005104.PythiaWenu.recon.AOD.v12000601_tid006048._*.root.*

• on dcache (I needed to issue lcg_env to be able to access dcache files)
• a total of 1911 AOD files @ often 250 events each = 476 656 events
• each AOD is about 35 MB

https://twiki.cern.ch/twiki/bin/view/Atlas/SAN

AOD content
You can look at the AOD content, for each event, with the
jobOptions

StoreGateSvc = Service("StoreGateSvc")
StoreGateSvc.Dump = True #true will dump data store contents
StoreGateSvc.OutputLevel = DEBUG

Example excerpts for ParticleJets:

2007/04/20 trying out SANs 8

2007/04/20 trying out SANs 9

jobOptions to produce SAN
There are variations depending on the package version

UserAnalysis/share → UserAnalysis/run
StructuredAAN_topOptions.py

RecExCommon/RecExCommon_topOptions.py
• ParticleBuilderOptions/share/SAN_Builder_jobOptions.py

You can modify
StructuredAAN_topOptions.py (now in your run directory)

• AOD files, number of events
SAN_Builder_jobOptions.py (do not move it)

• set which collections will go in the SAN!!!

Let’s look at aspects of SAN_Builder_jobOptions.py

2007/04/20 trying out SANs 10

jobOptions to produce SAN
theApp.TopAlg += ["StructuredAAN/SAN"]
############# The properties of the StructuredNTuple Algorithm
SAN = Algorithm("SAN")
############ The SAN making AlgTools ---
SAN.AlgTools = [

"SanRecVertexBranchTool/RecVertexBranches", VERTICES
"SanClusterBranchTool/ClusterBranches", CLUSTERS
"SanTrackBranchTool/TrackBranches", TRACKS
"SanElectronBranchTool/ElectronBranches", ELECTRONS
"SanPhotonBranchTool/PhotonBranches", PHOTONS
"SanMuonBranchTool/MuonBranches", MUONS
"SanMissingETBranchTool/MissingETBranches", MET
"SanTauJetBranchTool/TauJetBranches", TAUS
"SanParticleJetBranchTool/ParticleJetBranches", JETS
"SanTruthParticleBranchTool/TruthParticleBranches“ TRUTH
]

Each type of SAN branches can be configured
Trigger information is flat: it will be structured in Athena 13

Electron branches
Electrons - List all the containers to go to the SAN
SAN.ElectronBranches.ElectronContainers = [

"ElectronCollection",
"AtlfastElectronCollection"
]

UserElectronTool = Algorithm ("SAN.ElectronBranches.UserElectronTool")
UserElectronTool.TrackRefKey = UserTrackParticleTool.TrackRefKey
UserElectronTool.ClusterRefKey = UserCaloClusterTool.ClusterRefKey
UserElectronTool.ElectronRefKey = "ElectronRef"
SAN.ElectronBranches.TTreeBranchBufferSize = 2000
SAN.ElectronBranches.TTreeBranchSplitLevel = 99

Two electron branches configured
each container is made of User::Electron

• include info related to tracks and calorimeter clusters

2 containers

2007/04/20 trying out SANs 11

ParticleJet branches
ParticleJets - List all the ParticleJet contianers to appear in the SAN
SAN.ParticleJetBranches.ParticleJetContainers = [

"Kt4TowerParticleJets",
"Kt6TowerParticleJets",
"Cone4TowerParticleJets",
"ConeTowerParticleJets",
"Kt4TopoParticleJets",
"Kt6TopoParticleJets",
"Cone4TopoParticleJets",
"ConeTopoParticleJets",
"Kt4TruthParticleJets",
"Kt6TruthParticleJets",
"Cone4TruthParticleJets",
"ConeTruthParticleJets",
"AtlfastParticleJetContainer"
]

UserParticleJetTool = Algorithm ("SAN.ParticleJetBranches.UserParticleJetTool")
UserParticleJetTool.TrackRefKey = UserTrackParticleTool.TrackRefKey
UserParticleJetTool.ClusterRefKey = UserCaloClusterTool.ClusterRefKey
UserParticleJetTool.ElectronRefKey = UserElectronTool.ElectronRefKey
UserParticleJetTool.ParticleJetRefKey = "JetRef"

13 containers

each containers is made of User::ParticleJet

Involves tracks,
clusters and
electrons

2007/04/20 trying out SANs 12

Trigger branches
if doTrigger:

include("TriggerRelease/TriggerFlags.py")
#include ("TriggerRelease/jobOfragment_TriggerCBNT.py")
include("TrigT1Calo/jobOfragment_L1CaloCBNT.py")
include("CBNT_AOD/CBNT_AodTrigger_jobOptions.py")
include("TrigNtCalo/jobOfragment_TrigNtCalo.py")
include("TrigNtInDet/jobOfragment_TrigNtInDet.py")
include("TrigNtInDet/CBNT_TrigEFParticle_jobOptions.py")
include("TrigNtInDet/InDetTrigPriVxCBNT_jobOptions.py")
include("TrigNtEgamma/jobOfragment_TrigNtEgamma.py")
include("TrigNtBphys/jobOfragment_TrigNtBphys.py")
include("TrigNtBjet/jobOfragment_TrigNtBjet.py")
include("TrigNtTau/jobOfragment_TrigNtTau.py")
include("TrigDecisionMaker/jobOfragment_CBNTAA_TriggerDecision.py")

1 word per branch
expected to be structured in Athena 13
notice the useful TriggerDecision branches

• allowing analysis code like if (m_triggerDecisions[L1_EM25]) {
// do something

}

2007/04/20 trying out SANs 13

2007/04/20 trying out SANs 14

SAN production
Batch jobs on BQS on ccali
Each job:

reads 10 AOD, a total of 2500 events
produces one SAN file about 110 MB in size
takes between 8800 and 14500 normalized time units

• elapsed time of about 45 min

A total of 192 jobs (default jobOptions)
SAN files at

/sps/atlas/m/mlefebvr/SAN_Wenu/SAN/job*/SAN.root

2007/04/20 trying out SANs 15

SAN content
I defined two different choices of set of containers
branch default trimmed
RecVertex 1 1
CaloCluster 8 5
TrackParticle 9 1
Electron 2 1
Photon 2 1
Muon 3 2
MissingET 11 11
TauJet 4 2
ParticleJet 13 2
TruthParticle 1 1
Trigger branches all only “Decisions”

2007/04/20 trying out SANs 16

SAN memory usage
Looking at the first SAN file (first 10 AOD, 2500 events)

trimmed
B KB/event KB/event

header 34851 0.03% 0.01 0.01
Muon 220329 0.21% 0.09 0.06
RecVertex 283475 0.27% 0.11 0.11
Photon 371760 0.36% 0.15 0.13
MissingET 489931 0.47% 0.19 0.19
TauJet 617778 0.59% 0.24 0.21
Electron 2011830 1.93% 0.79 0.73
TrackParticle 6165966 5.92% 2.41 1.41
TruthParticle 17407646 16.71% 6.80 6.80
ParticleJet 23956596 23.00% 9.36 1.79
Trigger 25112937 24.11% 9.81 0.00
CaloCluster 27473540 26.38% 10.73 1.51
TOTAL 104146639 40.68 12.96

comparing original and trimmed SAN
• some small changes in size for untouched branches: not understood
• give identical results for me so far

2007/04/20 trying out SANs 17

Analysis with SAN
Skeleton root macros to access the SAN are provided

the TWiki was helpful
proposed steps:

root
root[0] .x startup.C
root[1] TFile *file = TFile::Open("SAN.root")
root[2] TTree * tree = (TTree*)gDirectory->Get("CollectionTree")
root[3] tree->Process("AnalysisSkeleton.C+")

I found it easy to follow and to modify
• AnalysisSkeleton.C contains detailed examples on how to access data
• the code will be familiar to those analyzing AODs using Athena
• other *.C files give good examples for specific analyses

– focussing on trigger, or electron, or...

The development turnaround time is small
• modify, compile, and run on a few thousand events in less than 2 min

2007/04/20 trying out SANs 18

Root analysis code
I assume one should try to produce code as close
as Athena code

to be able to port it to an Athena algorithm if needed
this requires some discipline
I noticed some intrinsic differences

• there are surely more... but by design they are kept to a minimum
• User::IParticle::hlv() returns a TLorentzVector, not

HepLorentzVector
– issues with members, such as DeltaR() and deltaR()

the ultimate test would be to actually try to port some
analysis code from a Root macro (or set of user Root
classes) into an Athena algorithm

• I have not tried that yet

2007/04/20 trying out SANs 19

Small analysis with SAN
Analysis using truth electron info

select truth electron
• abs(pdgId) == Pdg::e_minus
• isGenStable()

– status%1000 == 1 || (status%1000 == 2 && status > 1000)
– barcode < 100000

define “good” truth electron
• Et > 25 GeV
• |η| < 2.5

keep events with only one good truth electron

100%
67.3%
67.3% 100%

97.9%
82.8%
74.0%
89.5%

49 events
have more
than one

good truth
electrons...

Trigger efficiency study (truth only)

2007/04/20 trying out SANs 20

2007/04/20 trying out SANs 21

Trigger efficiency study (truth only)

Trigger efficiency study (truth only)

2007/04/20 trying out SANs 22

2007/04/20 trying out SANs 23

Truth and Reco electron matching
Look for 1 to 1 ∆R match between the truth electron and one
reco electron (no selection on reco electrons)

limit match search to ∆R < 0.2

2007/04/20 trying out SANs 24

Truth and Reco electron energy matching
E(reco) – E(truth) / E(truth)

2007/04/20 trying out SANs 25

Small analysis with SAN
Analysis using reco electron only

define “good” reco electron (after discussion with Thibault)
• isEM == 0
• Et > 25 GeV
• |η| < 1.3 or |η| > 1.6 and |η| < 2.4

missingEt obtained from MET_Final
look for jets not overlapping with a good electron

• I only consider as overlapping, jets that are 1 to 1 overlapping with an e±

Event selection (goal here is generating MT(W) distribution)
at least one good electron
missingEt > 25 GeV
no non overlapping jets with Et > 30 GeV

100%
34.0%
30.1%
22.2%

106025 with 1 e±

18 with 2 e±

Before selection: electrons

2007/04/20 trying out SANs 26

Before selection: electrons

2007/04/20 trying out SANs 27

Before selection: missing Et

2007/04/20 trying out SANs 28

Jets

need more work
removing overlaps

with electrons?!

2007/04/20 trying out SANs 29

After selection: electrons

2007/04/20 trying out SANs 30

W transverse mass

2007/04/20 trying out SANs 31

1 entry per good electron
only one entry per event for all but 18 events

2007/04/20 trying out SANs 32

Root code example
A code fragment (if you are keen!)

// loop over electrons and look for good electrons
std::vector<Electron> goodElectronV;
for (std::vector<Electron>::const_iterator Itr = m_electron->begin(); Itr != m_electron->end(); ++Itr) {
const Electron& electron = *Itr;
m_RelectronEt->Fill(electron.et()/GeV);
m_RelectronNumberOfPixelHits->Fill(electron.numberOfPixelHits());
// get the electron track and cluster
const TrackParticle* track = electron.track();
const CaloCluster* cluster = electron.cluster();
// compute E/p
if (cluster && track) {
double e_over_p = (track->p() > 0.) ? cluster->e() / track->p() : 0.;
m_RelectronEoverP->Fill(e_over_p);

}
// look for good electrons
if (electron.isEM() != 0) continue; // isEM cut
if (electron.et() < 25.*GeV) continue; // Et cut
double absEta = fabs(electron.eta());
if ((absEta > 1.3 && absEta < 1.6) || absEta > 2.4) continue; // eta range cut
goodElectronV.push_back(electron);

}

2007/04/20 trying out SANs 33

Root code execution time
Analyzing 476 656 events

97 213 normalized time units on BQS
elapsed time: about 3h

Analyzing 2500 events interactively
less than 1 min

2007/04/20 trying out SANs 34

Using SAN as tag
Using SAN as tags to run an Athena job

use pool_insertFileToCatalog to produce PoolFileCatalog.xml

make simple selection
• missingET > 25 GeV
• at least one electron with

– Et > 25 GeV
– |η| < 1.3 or |η| > 1.6 and |η| < 2.4

here, to produce another SAN!

Athena
StructuredAANSAN_sel

AOD

SAN Root macros user
output

2007/04/20 trying out SANs 35

Using SAN as tag, jobOption
Only jobO available to use SAN as selection not set
up to produce trigger branches

I produced my own, and it worked
• trigger independent results were identical with the default or my

modified jobOptions

In all cases, the relevant lines are
EventSelector.InputCollections = ["SANfile"] # for the file SANfile.root to be used as tag
EventSelector.Query="(MET_Final.et() >= 25000.) && (ElectronCollection.et() >= 25000.) &&

(abs(ElectronCollection.eta()) <= 2.4) && (abs(ElectronCollection.eta()) <= 1.3 ||
abs(ElectronCollection.eta()) >= 1.6)"

EventSelector.CollectionType = "ExplicitROOT"

Using SAN as tag: comparing results
Run analysis on one SAN file (2500 events)

original SAN
SAN obtained after event selection using original SAN

Final results should be identical...
but they are not

original SAN selected

770 ≠ 747, but they should be equal numbers
somehow the selection rejects 23 events wrongly
after much effort, I still do not understand why

2007/04/20 trying out SANs 36

2007/04/20 trying out SANs 37

Analysis models: new idea

AOD Athena
StructuredAAN SAN Root macros user

output

AOD Athena
AnalysisSkeleton

user
output

similar code

ideally, identical

AOD Root macros user
output

pAOD

tAOD
??

See talk by RD Schaffer 2007/03/13:
“Accessing transient data objects from ROOT”

http://indico.cern.ch/conferenceDisplay.py?confId=13815

http://indico.cern.ch/conferenceDisplay.py?confId=13815

2007/04/20 trying out SANs 38

Comments and Conclusions
Easy to produce SAN from AOD

code exists, only need to tune jobOptions for SAN content
Easy to modify Root macros provided for analysis

if you are familiar with Root and C++, of course!
much scope for modifications and improvements

• should aim at reducing compilation time for quicker user
turnaround

– important for complex analyses
– could split the code in smaller bits somehow

Future developments should be followed closely
• I think working with SANs now is useful

	Trying out SANs Structured Athena-aware Ntuples
	Introduction
	Introduction
	SAN concept
	Analysis models
	UserAnalysisEvent EDM
	Getting started
	AOD content
	jobOptions to produce SAN
	jobOptions to produce SAN
	Electron branches
	ParticleJet branches
	Trigger branches
	SAN production
	SAN content
	SAN memory usage
	Analysis with SAN
	Root analysis code
	Small analysis with SAN
	Trigger efficiency study (truth only)
	Trigger efficiency study (truth only)
	Trigger efficiency study (truth only)
	Truth and Reco electron matching
	Truth and Reco electron energy matching
	Small analysis with SAN
	Before selection: electrons
	Before selection: electrons
	Before selection: missing Et
	Jets
	After selection: electrons
	W transverse mass
	Root code example
	Root code execution time
	Using SAN as tag
	Using SAN as tag, jobOption
	Using SAN as tag: comparing results
	Analysis models: new idea
	Comments and Conclusions

