Particle Detectors

A brief introduction with emphasis on high energy physics applications

TRIUMF Summer Institute 2006 July 10-21 2006

Lecture I

- measurement of ionization and position
- Lecture II
 - scintillation and photo detection
 - calorimetry
- Lecture III
 - particle identification
 - detector systems

Michel Lefebvre Physics and Astronomy University of Victoria

Lecture II

Scintillation and photo detection

- Organic scintillators
- Inorganic scintillators
- Scintillator readout
- Photo detectors
- Calorimetry
 - Interactions of electrons and photons in matter
 - Electromagnetic and hadronic showers
 - Electromagnetic and hadronic calorimeters
 - Example: LAr accordion EM calorimetry

Scintillation and photo detection

- Energy deposition by ionizing particles
 - production of scintillation light (luminescence)
- Scintillators are multi purpose detectors
 - trigger counters
 - veto counters
 - time of flight measurement
 - tracking detectors
 - calorimetry
 - others!
- Inorganic and organic scintillators
 - Inorganic: high light output, but slow
 - Organic: fast, but lower light output

Organic scintillators

- Plastic scintillators are the most widely used
 - Ionization by charged particles
 - generate optical photons (blue green)
 - densities: between 1.03 and 1.20 g cm⁻³
 - typical yield:1 photon per 100 eV of deposited energy
 - MIP in 1cm thick material yields $\approx 2\times 10^4$ photons

Response not linear with ionization density

- Birks factor $\longrightarrow \frac{dL}{dx} = L_{\circ}$
- Decay times a few ns
 - rise times much faster (allows sub-ns timing)
 - light decay can depend on exciting particle, allowing ID
- Production to desired shape, low cost
 - also scintillating fibres

dE

Organic scintillators

Scintillation mechanism

they have low Z, being mainly made of H and C

- low γ detection efficiency (\approx only Compton effect).
- but high neutron detection efficiency via (n,p) reactions

Organic scintillators

Table A6.3 Properties of some organic scintillators

scintillator	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (ns)	scintillation pulse height ¹⁾	H/C ratio ²⁾
Monocrystals						
naphthalene	1.15	1.58	348	11	11	0.800
anthracene	1.25	1.59	448	30-32	100	0.714
trans-stilbene	1.16	1.58	384	3-8	46	0.857
p-terphenyl	1.23		391	6-12	30	0.778
Plastics ³⁾						
NE 102 A	1.032	1.58	425	2.5	65	1.105
NE 104	1.032	1.58	405	1.8	68	1.100
NE 110	1.032	1.58	437	3.3	60	1.105
NE 111	1.032	1.58	370	1.7	55	1.096
Plastics ⁴⁾				• · · ·		
BC-400	1.032	1.581	423	2.4	65	1.103
BC-404	1.032	1.58	408	1.8	68	1.107
BC-408	1.032	1.58	425	2.1	64	1.104
BC-412	1.032	1.58	434	3.3	60	1.104
BC-414	1.032	1.58	392	1.8	68	1.110
BC-416	1.032	1.58	434	4.0	50	1.110
BC-418	1.032	1.58	391	1.4	67	1.100
BC-420	1.032	1.58	391	1.5	64	1.100
BC-422	1.032	1.58	370	1.6	55	1.102
BC-422Q	1.032	1.58	370	0.7	11	1.102
BC-428	1.032	1.58	480	12.5	50	1.103
BC-430	1.032	1.58	580	16.8	45	1.108
BC-434	1.049	1.58	425	2.2	60	0.995

¹⁾ relative to anthracene

²⁾ ratio of hydrogen to carbon atoms
 ³⁾ Nuclear Enterprises Ltd. Sighthill, Edinburgh, U.K.

⁴⁾ Bicron Corporation, Newbury, Ohio, USA

Inorganic scintillators

- Inorganic crystalline scintillators
 - Ionization by charged particles
 - Nal, Csl, BaF₂, Bi₄Ge₃O₁₂, PbWO₄,...
 - High density and high Z
 - well suited for detection of charged particle and γ
 - densities: between ~4 and ~8 g cm⁻³
 - high *dE/dx*
 - high conversion efficiency for electrons and γ
 - often with very high light output
 - often more than two time constants
 - fast recombination from active centers (ns to μ s)
 - delayed recombination due to trapping (≈100 ns)

Inorganic scintillators

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

II/8

Inorganic scintillators

- Liquid noble gases (LAr, LKr, LXe)
 - also two time constants
 - few ns and 100 to 1000 ns, but same wavelegth

Scintillator readout

light guides

• transfer by total internal reflection (and reflector)

wavelength shifter (WLS) bars

Scintillator readout

optical fibres

• light transport by total internal reflection

Scintillating fibre tracker

scintillating plastic fibres

- many advantages
 - high geometrical flexibility; fine granularity; low mass
 - fast response (ns if fast readout; suitable for triggering)
- UA2 upgrade scintillating fibre tracker (1987!)

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Scintillating fibre tracker

UA2 upgrade SFD

Ansorge et al, NIM A265 (1988) 33-49 Alitti et al, NIM A279 (1989) 364-375

Fig. 13. The detection of an electron in the SFD. The hit fibres are displayed in the z = 0 plane with their radius enlarged by a factor 3 for clarity.

Photo detectors

Convert light into detectable electronics signal

use photoelectric effect to convert photons to photoelectrons

Photo detectors

- Photoelectric effect in photocathodes
 - 3-step process
 - photo inonization of molecule
 - electron propagation through cathode
 - escape of electron back into the vacuum

Vacuum based photo detectors

Photo multiplier tubes (PMT)

- photo emission from photocathode (PC)
- secondary emissions from dynodes
 - dynode gain: g = 3 to 50
 - 10 dynodes with g = 4: total gain $G = 4^{10} \approx 10^6$

(Philips Photonic)

Vacuum based photo detectors

Energy resolution of PMT

 determined mainly by the fluctuation of the number of secondary electrons emitted from the dynodes

Vacuum based photo detectors

Multi anode PMT

- example: Hamamatsu R5900 series
 - up to 8x8 channels
 - size 28x28 mm², active area 41%
 - bialkali PC: Q.E. = 20% at 400 nm
 - gain $G \approx 10^6$

recent example: Hamamatsu flat panel PMT

• active area > 90%

Solid state photo detectors

Photo diodes (PD)

- high Q.E. but no gain (G = 1)
 - p layer must be very thin (< 1 μm); visible light absorbs rapidly in Si
 - Q.E. \approx 80% at λ = 700 nm
 - good for read out of scintillators

Avalanche photo diodes (APD)

- avalanche multiplication
 - high reverse bias $\Delta V \approx 100$ to 200V
 - high internal field leads to avalanche

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

II/20

Calorimetry

- Energy measurement by total absorption
 - works for charged and neutral particles
 - spatial reconstruction
 - particle identification capability
- Measured particle is lost (destructive method)Basic mechanism
 - electromagnetic or hadronic showers
- Detector response is proportional to E
 - not always true for hadronic showers
- Energy converted into ionization and/or excitation of matter

Interactions of electrons in matter

Ionization and bremsstrahlung

Interactions of electrons in matter

bremsstrahlung

photon produced in the Coulomb field of the absorber nuclei $r_{e} = 2.82 \times 10^{-13} \text{ cm}$

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 r_e^2 \frac{m_e^2}{m^2} E \ln \frac{183}{Z^{1/3}} \propto \frac{E}{m^2}$$

- important for electrons and ultra relativistic muons
- for electrons

$$-\frac{dE}{dx} = \frac{E}{X_{\circ}} \longrightarrow E = E_{\circ}e^{-\frac{x}{X_{\circ}}}$$
$$X_{\circ} = \left[4\alpha N_{A}\frac{Z^{2}}{A}r_{e}^{2}\ln\frac{183}{Z^{1/3}}\right]^{-1}$$
radiation length
(normally in g/cm²)
See also table on page II/33

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Interactions of electrons in matter

critical energy

- bremsstrahlung loss = ionization loss
- for electrons

$$E_c^{\text{solid and liquid}} \approx \frac{610 \text{ MeV}}{Z+1.24} \qquad E_c^{\text{gas}} \approx \frac{710 \text{ MeV}}{Z+1.24}$$

for muons

$$E_c \approx E_c^{\rm e} \left(\frac{m_{\mu}}{m_{\rm e}}\right)^2 = 207^2 E_c^{\rm e}$$

Interactions of photons in matter

Photo-electric effect

 $\gamma + A = \mathbf{e}^- + A^+$ energy-momentum conservation requires a third partner close by \rightarrow photo effect releases electrons mainly from the inner most atomic shell (K)

$$\sigma_{\text{photo-e}}^{\text{K}} = 32\pi \sqrt{\frac{2}{3\epsilon^{7}}} \alpha^{4} Z^{5} r_{\text{e}}^{2} \xrightarrow{\epsilon \gg 1} 4\pi r_{\text{e}}^{2} \alpha^{4} Z^{5} \frac{1}{\epsilon} \qquad \epsilon \equiv \frac{E_{\gamma}}{m_{\text{e}} c^{2}}$$

Compton scattering

$$\gamma + \mathbf{e}^{-} = \gamma + \mathbf{e}^{-} \qquad \Delta \lambda = \lambda_{C} \left(1 - \cos \theta \right)$$

$$\sigma_{\text{Compton}}^{\text{atomic}} = Z \sigma_{\text{Compton}}^{\text{e}} \xrightarrow{\epsilon \gg 1} \sigma_{\text{Compton}}^{\text{atomic}} \propto \frac{\ln \epsilon}{\epsilon}$$

Interactions of photons in matter

Pair production

 $\gamma + A = \mathbf{e}^+ \mathbf{e}^- + A$

In the Coulomb field of a nucleus or electron. Only possible if $E_{\gamma} \ge 2m_{\rm e}$ of course.

$$\sigma_{\text{pair}} \xrightarrow{\epsilon \gg 1} \frac{7}{9} \frac{A}{N_A} \frac{1}{X_{\circ}} \qquad \lambda_{\text{pair}} \xrightarrow{\epsilon \gg 1} \frac{9}{7} X_{\circ} \qquad \epsilon \equiv \frac{E_{\gamma}}{m_{\text{e}} c^2}$$

Mass attenuation coefficient µ

 $I_{\gamma} = I_{\circ} e^{-\mu x} \qquad \begin{array}{c} \text{normally } \mu \text{ in } \text{cm}^2/\text{g} \\ \text{and } x \text{ in } \text{g/cm}^2 \end{array} \qquad \qquad \mu_i = \frac{N_A}{A} \sigma_i$ $\mu = \mu_{\text{photo-e}} + \mu_{\text{Compton}} + \mu_{\text{pair}} + \cdots$

Interactions of photons in matter

electron shower in a cloud chamber with lead absorbers (Joram)

³ Only consider bremsstrahlung (e^{\pm}) and pair production (γ) \rightarrow assume E_{γ} large.

Multiplication stops when average shower particle energy = critical energy. At this stage the e^{\pm} will mainly lose energy through ionization and the multiplication will stop. This happens before the photons have less than $2m_ec^2$ energy.

energy losses and

fluctuations lowers

Let k be the number of steps needed for the multiplication to stop.

$$E = E_C 2^k$$

The corresponding maximum number of particles in the shower is then

$$\sum_{n=0}^{k} 2^{n} = 2^{k+1} - 1 \approx 2 \times 2^{k} = 2 \frac{E}{E_{C}}$$

Each step takes place over a characteristic length: X_{0} for e^{\pm} and $9X_{0}/7$ for γ . Assume X_{0} for both. Then

$$k = \frac{1}{\ln 2} \ln \frac{E}{E_C} = 1.44 \ln \frac{E}{E_C}$$

In practice, ionization
energy losses and
fluctuations lowers
somewhat this number
$$k = \frac{X_{\text{max}}}{X_{\circ}} = \begin{cases} \ln \frac{E}{E_C} - 1.1 \text{ for electrons} \\ \ln \frac{E}{E_C} - 0.3 \text{ for photons} \end{cases}$$

This is the number of X_0 needed to stop shower multiplication. This corresponds to "shower max". Grows like InE. **TRIUMF Summer Institute 2006. Particle Detectors** Michel Lefebvre, Victoria

Aleinknecht

Simple model

attenuation

Complicated mixture of ionization losses, radiation losses and Compton scattering. But the electromagnetic shower attenuation seems to follow the minimum attenuation for photons. The corresponding photon mean free path is $\lambda = \underline{A}$

$$\lambda_{\gamma} = \frac{A}{N_A \rho \sigma_{\gamma}^{\min}}$$

The attenuation follows exponentially with a mean free path of λ_{γ} . So to attenuate down to 95%, one needs $3\lambda_{\gamma}$.

Therefore to contain 95% of a shower energy we need an absorber thickness of $k \frac{X_{\circ}}{\rho} + 3\lambda_{\gamma}$

This is actually close to experimental results!

For 100 GeV electrons on lead this gives $20X_0 = 11$ cm

- Transverse shower development
 - 95% containment in a cylinder of radius 2R_M
 - Molière radius

$$R_{\rm M} = \frac{21~{\rm MeV}}{E_C} X_{\circ}$$

 For 100 GeV electron in lead this gives
 1.7 cm

Nuclear interactions

Inelastic nuclear processes

determines the interaction of energetic hadrons

 $N \propto ln(E_{o})$

transverse momentum about 0.35 GeV/c

- Excitation and breakup of nucleus
 - nucleus fragments and secondary particles
- cross section depends ~only on A
 - $\sigma_{\text{inelastic}} \approx \sigma_{\circ} A^{0.7}$ $\sigma_{\circ} \approx 35 \text{ mb}$ A in g/mol
- hadronic absorption length

$$\lambda_{a} = \frac{A}{N_{A}\sigma_{\text{inelastic}}}$$

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Interaction and hadronic absorption lengths

Material	Ζ	А	$\rho [g/cm^3]$	$X_0[g/cm^2]$	$\lambda_a [g/cm^2]$
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1
Beryllium	4	9.01	1.848	65.19	75.2
Carbon	6	12.01	2.265	43	86.3
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0
Aluminium	13	26.98	2.7	24	106.4
Silicon	14	28.09	2.33	22	106.0
Iron	26	55.85	7.87	13.9	131.9
Copper	29	63.55	8.96	12.9	134.9
Tungsten	74	183.85	19.3	6.8	185.0
Lead	82	207.19	11.35	6.4	194.0
Uranium	92	238.03	18.95	6.0	199.0

Hadronic shower

- many processes involved
- more complex (and larger) than EM showers

Calorimeter types

- Homogeneous calorimeters
 - the detector is the absorber
 - good energy resolution
 - Imited spatial resolution, especially longitudinal
 - only used for electromagnetic calorimetry
- Sampling calorimeters
 - the detector and absorber are separated
 - only sample part of the shower
 - additional sampling fluctuations affect energy resolution
 - Imited energy resolution
 - good spatial resolution

Homogeneous calorimeters

Two main types

- Scintillation crystals
- Glass blocks, through Cherenkov radiation
 Scintillation crystals

Scintillator	Density	X_0 [cm]	Light	τ_1 [ns]	λ_1 [nm]	Rad.	Comments
	[g/cm ³]		Yield			Dam.	
			γ/MeV			[Gy]	
			(rel. yield)				
NaI (Tl)	3.67	2.59	4×10^{4}	230	415	≥10	hydroscopic,
							fragile
CsI (Tl)	4.51	1.86	5×10^{4}	1005	565	≥10	Slightly
			(0.49)				hygroscopic
CSI pure	4.51	1.86	4×10^{4}	10	310	10^{3}	Slightly
_			(0.04)	36	310		hygroscopic
BaF ₂	4.87	2.03	10^{4}	0.6	220	10 ⁵	
			(0.13)	620	310		
BGO	7.13	1.13	8×10 ³	300	480	10	
PbW0 ₄	8.28	0.89	≈100	10	≈440	10 ⁴	light yield $=f(T)$
				10	≈530		
		· · · · · · · · · · · · · · · · · · ·		·			Joram

Relative light yield: rel. to Nal(TI) readout with PM (bialkali PC)

- example: CMS electromagnetic calorimeter uses PbWO₄
- example: L3 used BGO for its EM calorimeter

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Homogeneous calorimeters

Cherenkov radiators

- Cherenkov radiation
 - produced when a charged particle travels in a dielectric (index of refraction n) at a velocity greater than the speed of light in that dielectric (c/n).

Material	Density	X_0 [cm]	n	Light yield	λ_{cut} [nm]	Rad.	Comments
	$[g/cm^3]$			[p.e./GeV]		Dam.	
				(rel. p.e.)		[Gy]	
SF-5	4.08	2.54	1.67	600	350	10^{2}	
Lead glass				(1.5×10^{-4})			
SF-6	5.20	1.69	1.81	900	350	10^{2}	
Lead glass				(2.3×10^{-4})			
PbF ₂	7.66	0.95	1.82	2000		10^{3}	Not available
				(5×10^{-4})			in quantity

Relative light yield: rel. to Nal(TI) readout with PM (bialkali PC)

Joram

example: OPAL used lead glass for its barrel and end-cap calorimeters

Sampling calorimeters

- Sample a fraction of the shower
 - variety of detectors used
 - MWPC
 - warm liquids
 - TMP (tetramethylpentane)
 - TMS (tetramethylsilane)
 - liquid noble gase elements
 - LAr (mainly), LKr, LXe
 - scintillators, fibres
 - silicon detectors

Sampling calorimeters

Electromagnetic calorimeters

- Use EM shower results:
 - number of particle at shower max is prop. to E_{o}
 - total track length of e^{\pm} is prop. to E_{o}
- Linearity
 - if the calorimeter signal is proportional to the e[±] track length
 - if the EM shower is completely contained in the calorimeter
 - \rightarrow then the calorimeter signal is proportional to E_o

Electromagnetic calorimeters

Intrinsic limit to energy resolution

- total number of track segments $N \propto \frac{E_{\circ}}{E_{C}}$ energy resolution improves with incident energy

$$\frac{\sigma(E)}{E} \propto \frac{\sigma(N)}{N} \propto \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{E_{\circ}}}$$

spatial resolution also scales the same way General parametrization

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Hadronic calorimeters

Sampling calorimeters

- EM and hadronic energy depositions are measured with different efficiencies
 - e/h ratio " $\pi / e'' = 1 (1 h/e) \left(\frac{E}{E_0}\right)^{m-1}$
 - if e/h = 1, the calorimeter is compensating
 - non compensations worsen the energy resolution

Liquid argon calorimetry

Liquid argon calorimetry

Accordion design

- novel hermetic design
- used for all ATLAS EM calorimetry
 - Lead-steel absorbers
 - multilayer readout boards
 - LAr is radiation hard

TRIUMF Summer Institute 2006, Particle Detectors

angle change with radius to keep LAr gap constant thickness

Michel Lefebvre, Victoria

Liquid argon calorimetry

Accordion EM calorimeter beam test results

Fig. 1. (a) Drift current and integrated charge vs time for an ion chamber calorimeter. (b) Response of a shaping amplifier to a short current pulse (δ). (c) Response of a shaping amplifier to the current form shown in (a). The dots indicate where the beam crossings (every 15 ns) would appear if $t_{\rm p}(\delta) = 20 \, {\rm ns}.$

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Lecture II: Questions

Question II.1

- Use the numbers shown on slide II/11 to obtain the solid angle aperture (in one direction) quoted, namely 3.1% and 5.3%.
- Question II.2
 - Using the lectures notes, obtain the result quoted at the bottom of slide II/30, namely that 100 GeV electron EM showers in lead are 95% contained in a depth of 20Xo = 11cm.