

ATLAS Calorimeter Calibration: strategies and progress

ATLAS Canada Review 10 December 2004

Michel Lefebvre (UVic) et al.

EM Calorimeters

- Benchmark channels $H \rightarrow \gamma\gamma$, $H \rightarrow$ eeee need high resolution O(100 GeV) range, coverage to low E_T
- Z'→ ee to few TeV range
- b-physics: e down to GeV range
 - Design goals for $|\eta|$ < 2.5: $\sigma(E)/E$ = 8-11 %/ $\!\sqrt{E}\oplus$ 200-400 MeV/E $\,\oplus$ 0.7 %
 - ◆ Electronics + Pileup noise ≈ 200-400 MeV/E
 - Constant term < 1%</p>
 - Linearity better than 0.1%

Hadron and forward Calorimeters

- Benchmark channels: Higgs with W \rightarrow jet jet, Z/W/top need good jet-jet mass resolution
- Higgs fusion, forward physics: good forward jet tagging
- ETMISS : jet resolution, linearity
 - Design goals:
 - ◆ 50% √E ⊕ 3% for |η| < 3
 - ♦ 50% √E ⊕10% for 3 < |η| < 5</p>

- EMB:

 |η| < 1.5

 EMEC

 1.4 < |η| < 3.2

 HEC

 1.5 < |η| < 3.2

 FCAL
 - **3.1 < |η| < 4.9**

Data and corrections flow

"Physics" pulse height reconstruction

- Get the height ADC in ADC counts, "ADC[Phys]"
 - LAr: use optimal filter "OFC" in ROD or offline

Now need to convert to current [μA] ...

- Can use channel-to-channel calibration pulser system
 - Correct for calibration ↔ physics pulse height differences for same injection current
- Intended LAr electronics calibration chain:

- Still need: $\mu A \rightarrow MeV$ (from testbeam, MC, ...)
- Alternative, if channel response uniform enough, can convert directly ADC[Phys] → MeV (from testbeam)

Current developments using 2004 testbeam data

Including: McPherson, Wielers, Vincter + MPI and Arizona colleagues

Zero'th calibration (ancient history)

- Inject calibration pulse with known current into channel to measure ADC $\rightarrow \mu A$
 - ⇒ Doesn't work well enough because of cell-to-cell differences in ADC[Phys]/ADC[Cal] for fixed current.

- Use simple electronics model (LC, maybe RC, + tdrift ...)
- Extract parameters of model
 - Calibration pulse only: Milano, MPI
 - Then must "line up" with physics pulse in time
 - Fit calibration ↔ physics pulse shape : LAPP, Victoria
 - Time domain or FFT methods
- Use predicted physics pulse + autocorr \Rightarrow OFC
 - Normalize: OFC on physics pulse computes height of corresponding calibration pulse with same I0

 ADC[cal]
- Then use calibration (ramp) runs ADC[cal] \Rightarrow DAC \Rightarrow R \Rightarrow μ A
- Then $\mu A \Rightarrow MeV$ from MC (or testbeam)
- Accuracy / channel uniformity: O(0.5%)

Calorimeter Reco/Calibration

Example of electron response phi-modulation correction, and resulting phi-resolution

Results shown here from T. Ince, R. Keeler

- Have several techniques, all of which use some "lab measurements" of some circuit parameters, and all use only calibration pulse
 - Full model fit (18 poles / 9 zeros) time consuming
 - Simplified model fit (9 poles / 3 zeros) used for most testbeams
 - NR method fits only for calibration chain parameters

► Use predicted physics pulse shape + autcorr ⇒ OFC

- Normalize: OFC on physics pulse computes height of actual pulse
- Then use calibration (ramp) runs which are corrected for ADC[phys]/ADC[cal] to give
 - ADC[phys] $\Rightarrow \mu A$
- Then $\mu A \Rightarrow MeV$ from MC (or testbeam)

Accuracy / channel uniformity: O(1%)

20

FCAL: Current channel reconstruction (Arizona, Carleton, Toronto)

- Use direct physics pulse shape accumulation from beam data
- measured physics pulse shape + OFC \Rightarrow OFC
 - Normalize: OFC on physics pulse computes height of actual pulse
- ♦ Then ADC[phys] ⇒ MeV from MC (or testbeam)
 - i.e. do not use the calibration system directly (yet)
- Accuracy : O(few %)
- Calibration system used for FEB stability monitoring
 - Investigations in progress about use of reflection pulse

Historically split into two communities

- **e**/γ
 - Used fixed $\Delta \eta x \Delta \phi$ cell indows (3x3, 3x5, 5x7, ...) to reconstruct shower core
 - Apply corrections for shower tails, detector effects (ϕ , η)
- Jets, τ, ETmiss
 - Direct building of jets from cells (sometimes 2D "towers")
 - Jet energy corrections ... (constant tuning ...)

Unpleasant side effects

- Difficult (impossible) to get best e/γ in hadronic events
- Jet energy scale corrections (very) sensitive to MC tunes, ...

New initiative (following in part from 2002 EMEC/HEC TB)

- Move ATLAS calorimeters to cluster-based reconstruction
 - Part of cluster benchmark is that it should contain e/γ objects
- Apply cluster or cell "energy density" weights for offline compensation corrections in hadronic energy deposition
 - Weight calculation algorithms under most intense study now

Hadronic shower consists of

- EM energy (eg $\pi^0 \rightarrow \gamma\gamma$) : **O**(50%)
- Visible non-EM energy (eg dE/dX) : O(25%)
- Invisible non-EM energy (eg nuclear breakup) : O(25%)
- Escaped energy (eg v) : O(2%)

Goal:

- Event-by-event offline compensation of hadronic energy deposition
- Improve linearity and resolution

Hadronic Calibration Models

Model I : Physics object based:

- first reconstruct hadronic final state physics objects (jets, missing Et) using calorimeter signals on a fixed (electromagnetic) energy scale (accepting the fact that these are ~30% too low, typically);
- then calibrate the jets in situ using physics events
- a priori using "MC Truth" in simulations for normalization (presently studied approach in ATLAS)
 - Model I is currently the most common approach in ATLAS physics studies. It is somewhat fragile, sensitive to fragmentation modeling, jet finding, etc.

Model II : Detector-based objects

- reconstruct calorimeter final state objects (clusters) first and calibrate those using a "local" normalization (reference local deposited energy in calorimeter)
- reconstruct physics objects in this space of calibrated calorimeter signals
- apply higher level corrections for algorithm inefficiencies determined in situ or a priori, as above
 - Model II has been the focus of our testbeam analysis, and we are studying it's applicability to ATLAS

2004-December-10

P. Loch

Test-bench : combined calo beam tests

Cluster (or cell) weights are used for energy reco

$$E_{\text{reco}}\left(C_{j}\right) = \sum_{\substack{\text{cells or}\\\text{clusters}}} w\left(C_{j}, A_{k}\right) E_{\text{em}}$$

- weights depends on some parameters C_j and some observables A_k
- Parameters should be obtained from (validated!) MC
- First look at parameters can be obtained from TB data through the minimization of

$$\chi^{2} = \sum_{\text{events}} \frac{\left[E_{\text{beam}} - E_{\text{leak}} - E_{\text{reco}}\left(C_{j}\right)\right]^{2}}{\left(\sigma_{\text{leak}}^{2} + \sigma_{\text{reco}}^{2}\right)}$$

- leakage outside the cluster/cell (but in the calorimeter) can be parameterized from the data
- leakage outside the detector must be parameterized from MC

- Consider 3D topological clusters
- Use cluster energy density as observable
- Use simple weight function, à la H1

$$E_{\text{reco}}\left(C_{j}^{\text{E}}, C_{j}^{\text{H}}\right) = \sum_{\substack{\text{EMEC}\\\text{clusters}}} w^{\text{E}}\left(C_{j}^{\text{E}}, \rho\right) E_{\text{em}}^{\text{EMEC}} + \sum_{\substack{\text{HEC}\\\text{clusters}}} w^{\text{H}}\left(C_{j}^{\text{H}}, \rho\right) E_{\text{em}}^{\text{HEC}}$$

$$w(C_j,\rho) = C_1 \exp(-C_2\rho) + C_3$$

Significant improvement of energy resolution

- Results published [NIM A531 (2004) 481-514] uses fixed C2 values
- Electronics noise subtracted in quadrature

Current work: beam energy independent cluster weights (Victoria)

• The knowledge of the beam energy must be taken out!

First look at beam energy independent cluster weights

- Use beam energy to produce weight parameterization
- Estimate beam energy using cluster energy
- In general one pion corresponds to many clusters

• Use
$$w(C_j, \rho) = C_1 \exp(-C_2 \rho^2) + C_3$$

Current work: beam energy independent cluster weights

As expected the energy resolution is degraded somewhat, especially at low energy

Linearity of response is not affected by the removal of the knowledge of the beam energy

2004-December-10

- Weights can also be applied at cell level
 - thought to be more flexible and more adapted to ATLAS
- cell weights can depend on cluster observables
 - energy and energy density
 - cluster shape
 - distance of cell from shower axis
 - etc.

Initial attempts (NIM) only used energy density

results comparable to cluster weights

Recent attempts includes more observables and MC

$$E_{\text{cell}}^{\text{reco}} = wE_{\text{cell}}$$
$$w = \frac{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}} + E_{\text{cell}}^{\text{non-em invis}} + E_{\text{cell}}^{\text{escaped}}}{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}}}$$

2004-December-10

Large Canadian effort on the MC front

- taken responsibility of one package: LArG4TBEmecHec
- implementing access to MC truth within the Athena framework
- ◆ TB MC in Athena will very shortly allow direct comparison (≈same code!) of data and MC

100 GeV pion (charged tracks) in the 2002 EMEC-HEC beam test setup

Cell weights

Initial work on cell weighting promising...

weights obtained from MC only

... but still work in progress

- understand data/MC differences
- understand bias in reconstructing EM showers
- energy linearity

2004-December-10

Very first (2004/12/08) visualization of 2004 EMEC-HEC-FCAL TB MC using Athena!

100 GeV pion (charged tracks) in the 2004 EMEC-HEC-FCAL beam test setup

From local energy scale signal to physics objects

2002 EMEC-HEC data being made persistent

- allow data and MC to be analysed within the same framework
- need to analyze this data again with MC input
- 2004 EMEC-HEC-FCAL TB analysis
 - important (and complicated!) forward region
- Combine effort across all TB
 - 2002 EMEC-HEC, 2003 FCAL, 2004 EMEC-HEC-FCAL and Barrel Wedge
 - effort started in jets/tau/etmiss reconstruction
- Combine calorimetry and tracking
 - could start with muon+calo

Recent relevant meetings

- Calor2004, Mar 2004, Perugia
- ATLAS Calorimeter Calibration Workshop, Dec 2004, Štrba
- Many calibration, detector performance and physics meetings 2004-December-10