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W Driving physics requirements

¢ EM Calorimeters
= Benchmark channels H —» yy, H »> eeee need high resolution
0(100 GeV) range, coverage to low Er

m Z'— ee to few TeV range
= b-physics: e down to GeV range
¢ Design goals for ||| < 2.5: G(E)/E = 8-11 %/NE © 200-400 MeV/E @ 0.7 %
¢ Electronics + Pileup noise ~ 200-400 MeV/E

€ Constant term < 1%
9 Linearity better than 0.1%

¢ Hadron and forward Calorimeters

m Benchmark channels: Higgs with W — jet jet, Z/W/top need good jet-jet
mass resolution

m Higgs fusion, forward physics: good forward jet tagging
m Etwmiss : jet resolution, linearity
o Design goals:
¢ 50%\VE @ 3%for |n|<3
¢ 50% VE ©10% for3<|n| <5
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Data and corrections flow
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Electronics chain: “physics”

“Toy LAr Calo” lonization Signal
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Cell reconstruction steps
_"th_si@m reconstruction

m Get the height ADC in ADC counts, “ADC[Phys]”
o LAr: use optimal filter “OFC” in ROD or offline

¢ Now need to convert to current [uA] ...
m Can use channel-to-channel calibration pulser system

e Correct for calibration <> physics pulse height differences for same
injection current

m Intended LAr electronics calibration chain:
e ADC[Phys] —> ADCJ[Cal] — Current in pA (calib board)

Electrical |brat|on
Model ulser

m Still need: pA — MeV (from testbeam, MC, .

m Alternative, if channel response uniform enough, can convert directly
ADC[Phys] —»> MeV (from testbeam)

¢ Current developments using 2004 testbheam data
m Including: McPherson, Wielers, Vincter + MPI and Arizona colleagues
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Zero’th calibration (ancient history)

¢ Inject calibration pulse with known current into channel to measure I
ADC - pA

s = Doesn’t work well enough because of cell-to-cell differences in
ADC[Phys]/ADC[Cal] for fixed current.

o Eg: EMEC in 2002 CBT-EC1 run (Kanaya + RMcP)
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EM: Current channel reconstruction &l

¢ Use simple electronics model (LC, maybe RC, +
tdrift ...)

¢ Extract parameters of model

m Calibration pulse only: Milano, MPI
e Then must “line up” with physics pulse in time

m Fit calibration < physics pulse shape : LAPP, Victoria
e Time domain or FFT methods
¢ Use predicted physics pulse + autocorr = OFC

= Normalize: OFC on physics pulse computes height of
corresponding calibration pulse with same 10 = ADC|cal]

¢ Then use calibration (ramp) runs ADC|cal] = DAC = R = pA
¢ Then pA = MeV from MC (or testbeam)

¢ Accuracy / channel uniformity: 0(0.5%)
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Calorimeter Reco/Calibration
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¢ Example of electron response phi-modulation correction,
and resulting phi-resolution
m Results shown here from T. Ince, R. Keeler
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HEC: Current channel reconstruction .

¢ Have several techniques, all of which use some “lab
measurements” of some circuit parameters, and all use
only calibration pulse

= Full model fit (18 poles / 9 zeros) time consuming
= Simplified model fit (9 poles / 3 zeros) used for most testbeams
= NR method fits only for calibration chain parameters

¢ Use predicted physics pulse shape + autcorr = OFC

4 Nolrmalize: OFC on physics pulse computes height of actual
pulse

¢ Then use calibration (ramp) runs which are corrected
for ADC[phys)/ADC]cal] to give

s ADC[phys] = uA
¢ Then pA = MeV from MC (or testbeam)

o Accuracy / channel uniformity: Q(1%)
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FCAL: Current channel reconstruction %‘E}:’

r (Arizona, Carleton, Toronto)

4

Use direct physics pulse shape accumulation from beam data
measured physics pulse shape + OFC = OFC

= Normalize: OFC on physics pulse computes height of actual pulse
'S Then ADC[phys] = MeV from MC (or testheam)
m i.e. do not use the calibration system directly (yet)

Accuracy : O(few %)

Calibration system used for FEB stability monitoring
m Investigations in progress about use of reflection pulse
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Calorimeter Reco/Calibration

¢ Historically split into two communities
m ely
o Used fixed AnxA¢ cell indows (3x3, 3x5, 5x7, ...) to reconstruct shower core
e Apply corrections for shower tails, detector effects (¢, n)
m Jets, 1, ETmiss
e Direct building of jets from cells (sometimes 2D “towers”)
e Jet energy corrections ... (constant tuning ...)

¢ Unpleasant side effects

m Difficult (impossible) to get best ely in hadronic events
= Jet energy scale corrections (very) sensitive to MC tunes, ...

¢ New initiative (following in part from 2002 EMEC/HEC TB)

m Move ATLAS calorimeters to cluster-based reconstruction
o Part of cluster benchmark is that it should contain e/y objects

= Apply cluster or cell “energy density” weights for offline compensation
corrections in hadronic energy deposition

o Weight calculation algorithms under most intense study now
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¢ Hadronic shower consists of
= EM energy (eg 710—yy) : O(50%)
= Visible non-EM energy (eg dE/dX) : O(25%)
= Invisible non-EM energy (eg nuclear breakup) : O(25%)
= Escaped energy (eg v) : O(2%)

K ¢ Goal:
, = Event-by-event
e | offline
4 :.-"rf [1e® - e L'L H f
s | 'EK;E od EPEE compensation o
J /{" — aped thergy hadronic energy
e e R deposition
s e ynon=EM Energy = Improve linearity
e and resolution
N
:.-"H-:X_ . i
e ."LI:-':
\“'H..
Invisible Energy PN
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‘ Hadronic Calibration Models
I ¢ Model | : Physics object based:

m first reconstruct hadronic final state physics objects (jets, missing Et)
using calorimeter signals on a fixed (electromagnetic) energy scale
(accepting the fact that these are ~30% too low, typically);

= then calibrate the jets in situ using physics events

m a priori using “MC Truth” in simulations for normalization (presently
studied approach in ATLAS)

e Model |l is currently the most common approach in ATLAS physics
studies. It is somewhat fragile, sensitive to fragmentation
modeling, jet finding, etc.

¢ Model Il : Detector-based objects

m reconstruct calorimeter final state objects (clusters) first and calibrate
those using a “local” normalization (reference local deposited energy in
calorimeter)

m reconstruct physics objects in this space of calibrated calorimeter
signals

m apply higher level corrections for algorithm inefficiencies determined in
situ or a priori, as above

o Model Il has been the focus of our testheam analysis, and we are
studying it’s applicability to ATLAS
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Model Il: Local Calorimeter Calibration Algorithm Flow

P. Loch

[ Intrinsic Electromagnetic Energy Scale Signal J

\ 4
Fundamental Calorimeter Signal Definition:

Cell Level and Topological Noise Cuts

Y

Intermediate Calorimeter Signal Definition:
Cell Cluster Formation

Y

Advanced Calorimeter Signal Definition:

Cluster Classification

Y \ 4 Y

Electromagnetic Hadronic Non-classified
Cluster Cluster Cluster
\ 4 \ 4 \ 4
[ Final Local Energy Scale Signal J
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Electronic and readout effects
unfolded (nA->GeV calibration)

Detector noise suppression
algorithms (optional, can be
absorbed into cluster formation
algorithm)

Cluster formation in calorimeter
regions (2D->3D- >spanning
regions)

Simple cluster shape analysis ->
classification

Apply cluster type specific
calibration functions, dead
material and crack corrections

Best estimate for general
energy flow in event -> re-
calibrate smallest readout units
(cells)!
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Test-bench : combined calo heam tests L
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4 Cluster/cell weighting formalism &

¢ Cluster (or cell) weights are used for energy reco
E (C. ) — Z W(C. Ak ) E = weights depends on some
reco J j! em

o 5 6 parameters Cj and some
clusters observables A,

¢ Parameters should be obtained from (validated!) MC

¢ First look at parameters can be obtained from TB data
through the minimization of

RNCOVEN )

2 2
events (Gleak T Oreco )

= leakage outside the cluster/cell (but in the calorimeter) can be
parameterized from the data

= leakage outside the detector must be parameterized from MC
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’“\ First look: beam energy dependent =
'- cluster weights et

¢ Consider 3D topological clusters
¢ Use cluster energy density as ohservable
¢ Use simple weight function, a la H1
Ereeo (C5.CY)= D WE(CFLp)ES™+ D w(CHp) ELC
clsters Clusers

W(CJ ’p) = Cl exp(_czp)+c3 Data n", on EM scale
+ Significant improvement of
energy resolution

= Results published [NIM A531
(2004) 481-514] uses fixed C2
values

m Electronics noise subtracted in
quadrature

1 1 1 1 L 1 1 1 : 1 1 L 1 :i 1 1 1 1 i
2004-December-10 0 50 100 150 200
EreCO (G eV)

e L ~  Data &, cluster weights

G,(Erecc-) / Ereco




Current work: beam energy
independent cluster weights (victoria)

¢ The knowledge of the heam energy must be taken out!

¢ First look at beam energy independent cluster weights
m Use beam energy to produce weight parameterization
= Estimate beam energy using cluster energy
= In general one pion corresponds to many clusters
= Use W(C,,p)=C, exp(-C,p°)+C,

HEC Cluster Density Weights |

| EMEC Cluster Density Weights | |
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Current work: beam energy
independent cluster weights

¢ As expected the energy resolution is degraded
somewhat, especially at low energy

Resolution vs. beam energies ¢ Linearity of
8 *°r S iR response is
;:).25:_ ) s Cluster Density Weights not affected
"g - o Beam Energy Independent Weights by the removal
£ of the
E t °° knowledge of
s 0, the beam
- : w  w energy
0.1 A . o . )
- : 4 % :
0.05—
E T. Hughes, M. Lefebvre
A aawly gnlon sl aal | | | | g

oo

140 160 180 200
Beam Energy (GeV)
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Cell weights

¢ Weights can also he applied at cell level
= thought to be more flexible and more adapted to ATLAS

¢ cell weights can depend on cluster observables
= energy and energy density
m cluster shape
= distance of cell from shower axis
= etc.

¢ Initial attempts (NIM) only used energy density

= results comparable to cluster weights

¢ Recent attempts includes more observables and MC

reco
cell — WEceII
em non-em Vis non-em invis escaped
W = cell + EceII + EceII + EceII
em non-em Vvis
_|_

cell cell
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Cell weights

¢ Large Canadian effort on the MC front
m taken responsibility of one package: LArG4TBEmecHec
= implementing access to MC truth within the Athena framework

¢ TB MC in Athena will very shortly allow direct
comparison (xsame code!) of data and MC

E=|

:-..“"“_:_-.:
100 GeV pion
(charged tracks)
in the 2002
EMEC-HEC beam
test setup — SRR | Y

Fincke-Keeler, Gable [
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Cell weights

¢ Initial work on cell weighting promising...
= weights obtained from MC only

| /mnt/scratch/menke/root/clus 12380 mod31.root |

. 220
"DATA 80 GeV pio o0 MC 80 GeV pion
300
i 180
250 f— - 160
6/E"=  13.22% o /E"= 1% 6/E™"=  10.87% o/E¥'=  9.52%
140

200
r 120

100
80
60

150 |

100

[ 40
501
2011
% 14 % T
Ereco'IEbeam E“?GO/E beam

¢ ... but still work in progress
= understand data/MC differences
= understand bias in reconstructing EM showers

= energy linearity
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¥ EMEC-HEC-FCAL TB Monte Carlo

I ¢ Very first (2004/12/08) visualization of 2004
EMEC-HEC-FCAL TB MC using Athenal!

100 GeV pion {\§

(charged tracks) in s D
the 2004 EMEC- VAT
HEC-FCAL beam T =% e ——
test setup - e e L —

Fincke-KéeIer, Gable, Khakzad
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From local energy scale signal to
physics objects ,

l , . ] Detector signals calibrated;
P. Loch jiiatlocal Energy Scale Sighg cluster calibration fed back to

cells; dead material/crack

corrections applied -> best

\ 4 v estimate for event energy flow
Calibrated Calibrated Cells
Clusters

Y
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Particle o®
Identification r<n
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Reconstruction -> analysis: =
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Rejected Cluster particle id, jet finding, Et miss =
calculations... 0
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Missing E, Final calibration of physics
objects depends on analysis
algorithms and cuts; no general

v scheme, but one default for each
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More activities

\ 4

2002 EMEC-HEC data being made persistent

= allow data and MC to be analysed within the same framework
= need to analyze this data again with MC input

2004 EMEC-HEC-FCAL TB analysis

= important (and complicated!) forward region

Combine effort across all TB

= 2002 EMEC-HEC, 2003 FCAL, 2004 EMEC-HEC-FCAL and Barrel
Wedge

m effort started in jets/tau/etmiss reconstruction

Combine calorimetry and tracking
m could start with muon+calo

Recent relevant meetings
= Calor2004, Mar 2004, Perugia
= ATLAS Calorimeter Calibration Workshop, Dec 2004, Strba

= Many calibration, detector performance and physics meetings
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