Strategies for early physics with ATLAS at the LHC

Michel Lefebvre
University of Victoria
Getting ready for first LHC collisions

- **ATLAS has very ambitious performance goals**
 - driven by physics requirements
 - needs time and effort to control the detector at required level
 - final understanding of detector only achievable with LHC collisions

- **Pressure to extract results as soon as possible**
 - competition with other experiments
 - feedback signs of new physics to HEP community for planning

- **Exploit time available before collisions to understand the detector enough to take advantage of the very first data**
 - beam tests
 - detector and computing commissioning
 - preparation of calibration and analysis strategies
Initial conditions

- Assume the ATLAS detector installed
- Assume good knowledge of the detector
 - many years of simulation and (combined) beam test studies
 - commissioning at low and high rates
 - electronics pulser systems
 - cosmic rays: detector timing and alignment
 - first injections (beam gas collisions / beam halo muons): more specialized alignment work

- Expected detector performance at first collisions
 - EM calorimeter response uniformity ~1%
 - Hadronic calorimeter response uniformity 2 to 3%
 - $\gamma/e/\mu$ energy scale 0.5 to 2%
 - Jet energy scale <10%
 - Tracker alignment (in R_ϕ plane) 20 to 200 μm
LHC luminosity profile and physics reach

![LHC luminosity profile and physics reach graph]

- **ADD X-dim@9TeV**
- **SUSY@1TeV**
- **Higgs@200GeV**
- **SUSY@3TeV**
- **Compositeness@40TeV**
- **Z’@6TeV**
- **H(120GeV)\to\gamma\gamma**

Integrated luminosity (fb⁻¹)

- **L = 10^{33}**
- **L = 10^{34}**
- **SLHC: L = 10^{35}**

End of Year

- **2008**
- **2010**
- **2012**
- **2014**
- **2016**
- **2018**

Early physics

- **O(1fb⁻¹)**

M. Lefebvre

Strategies for early physics, NSERC ATLAS Review, 15-16 Dec 2006
LHC PP Cross Section

\[\sigma_{pp}^{(14\text{TeV})} \]

- 10^{14} inelastic
- 10^{11} b\bar{b}
- 10^{8} QCD jets (\(P_T > 200\text{ GeV})
- 10^{5} W \rightarrow e\nu
- 10^{5} Z \rightarrow e\bar{e}
- 10^{2} \text{Higgs} (m_H = 100\text{ GeV, } 200\text{ GeV, } 800\text{ GeV})

- \tilde{q}\tilde{q} (m_{\tilde{q}} = 1\text{ TeV}) m(\tilde{q}) \approx 1\text{ TeV}

- 1 fb^{-1}

Assume total pp cross section known to \sim 1\% from the TOTEM experiment

Typical cross sections:

<table>
<thead>
<tr>
<th>Process</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W \rightarrow e\nu)</td>
<td>15 nb</td>
</tr>
<tr>
<td>(Z \rightarrow e\bar{e})</td>
<td>1.5 nb</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>800 pb</td>
</tr>
<tr>
<td>(b\bar{b})</td>
<td>500 (\mu b)</td>
</tr>
<tr>
<td>(\tilde{q}\tilde{q}) (m_{\tilde{q}} = 1\text{ TeV})</td>
<td>1 pb</td>
</tr>
<tr>
<td>Higgs (m_H = 0.8\text{ TeV})</td>
<td>1 pb</td>
</tr>
</tbody>
</table>
Strategy for first interactions

- **First use of in-situ calibration** *(see Rob McPherson’s talk)*
 - understand and calibrate detector and trigger in-situ using well known physics samples

- **Understand basic SM physics at 14 TeV**
 - first checks of Monte Carlo simulations
 - first look at minimum bias events, jet distributions, parton density functions constraints; W, Z, top cross sections; top mass
 - understand detector signatures

- **The road to discovery**
 - understand SM backgrounds to searches
 - in particular missing E_T distribution
 - focus on robust signatures that could reveal new physics without a complete knowledge of the detector response
 - for example, hunt for mass bumps where more than one sub-detector contribute to the signal
Analyses in Canada for early physics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD di-jets</td>
<td>Victoria</td>
</tr>
<tr>
<td>SM top physics</td>
<td>Carleton</td>
</tr>
<tr>
<td>Hadronic top pair decays</td>
<td>Victoria</td>
</tr>
<tr>
<td>Anomalous top production</td>
<td>Victoria</td>
</tr>
<tr>
<td>Inclusive SUSY; fake / instrumental E_T</td>
<td>TRIUMF, Victoria, Toronto</td>
</tr>
<tr>
<td>SUSY end-point search</td>
<td>Carleton</td>
</tr>
<tr>
<td>Higgs in SUSY decays</td>
<td>Victoria</td>
</tr>
<tr>
<td>Two-electron finder for Drell-Yan, Z'</td>
<td>Victoria</td>
</tr>
<tr>
<td>Z' or strong interaction resonance in τ channel</td>
<td>Montréal, Toronto, TRIUMF</td>
</tr>
<tr>
<td>Black holes</td>
<td>Alberta, TRIUMF</td>
</tr>
<tr>
<td>ADD extra dimensions</td>
<td>Toronto</td>
</tr>
<tr>
<td>Randall-Sundrum graviton search</td>
<td>Regina, Toronto</td>
</tr>
<tr>
<td>Trigger-aware charged Higgs</td>
<td>McGill</td>
</tr>
<tr>
<td>Lepton identification and fake rate studies</td>
<td>Toronto</td>
</tr>
<tr>
<td>QCD event shapes and underlying event</td>
<td>Victoria</td>
</tr>
<tr>
<td>τ/jet separation and fake rate studies</td>
<td>Regina</td>
</tr>
<tr>
<td>W' and Z' studies</td>
<td>Regina</td>
</tr>
</tbody>
</table>
Trigger-aware analyses

- Triggering on interesting events is one of the greatest challenges at a hadron collider
 - All Computer System Commissioning (CSC) studies must be trigger-aware
- Canadian groups lead the efforts to characterize the trigger performance, in particular jet reconstruction

<table>
<thead>
<tr>
<th>Trigger jet slice</th>
<th>Level1: Custom made electronics. Produces regions of interest (RoIs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HLT: RoI algorithms sequence.</td>
</tr>
</tbody>
</table>

Level1: Custom made electronics. Produces regions of interest (RoIs)

L2:
- **TrigT2CaloJet**: Fast Cone algorithm
- **TrigL2JetHypo**: Et cut

(L2 time budget: 10 ms per event)

EF:
- **TrigCaloCellMaker**: Data unpacking
- **TrigCaloTowerMaker**: Calorimeter towers
- **TrigJetRec**: Jets Reconstruction
- **TrigJetHypo**: ET cut

(EF time budget: 1s per event)
Event filter jet reconstruction

- Event Filter (EF) jet calibration comparison

\[
\frac{p_T^{\text{trig}}}{p_T^{\text{offline}}}
\]

for di-jet samples and small ROI of 0.4 \times 0.4

for three different offline calibrations
Trigger menus for jets

- For performance studies
 - j20 ; j20kt ; 2j20 ; 3j20; 4j20
 - the 1,2,3,4 thresholds can be tuned simultaneously
 - compare k_T and cone jet algorithms when analysing AOD/ESD

- Low luminosity
 - J160 ; 2J120 ; 3J65 ; 4J50
 - these signatures are available for trigger aware analyses
tau/jet separation studies

- samples used
 - $Z \rightarrow \tau\tau$ and $W \rightarrow \tau\nu$
 - di-jet samples

Athena 12.0.31
Electron ID and fake rate studies

- Electron identification using likelihood
 - distribution of some likelihood variables and the likelihood estimator
 - $0 < |\eta| < 1.3$
Electron ID and fake rate studies

- Likelihood efficiency studies
 - $1.3 < |\eta| < 1.6$

![Fake rate (% vs. efficiency (%)) diagram](image-url)
Missing E_T studies

- Missing E_T is expected to be a key signature for most theories beyond the SM, such as SUSY or extra dimensions
 - in SUSY, Missing E_T is associated to a (new) weakly interacting particle, such as the lightest SUSY particle (LSP)
 - Thorough understanding of missing E_T measurement essential to many studies, in particular missing E_T tails

- SM source of missing E_T must be studied carefully
 - processes involving neutrinos

- Instrumental source of missing E_T can have many causes
 - known holes in the detector acceptance
 - unknown or poorly known material distributions
 - energy miscalibration
 - electronics problems
Missing E_T fake rate studies

- Tools have been developed to study instrumental fake missing E_T.
 - Simulated data produced with a number of calorimeter channels turned off or at reduced voltage
 - Control crates, high-voltage lines, readout lines
 - Compare simulated data with and without degraded calorimeter
 - For processes with and without genuine missing E_T
 - Learn how to detect such problems
 - Understand the effect on the missing E_T distribution (tails)

- Learn how to correct the calorimeter (and jet) energy

- Use corrections in inclusive searches for missing E_T signal beyond the SM
 - For example SUSY, extra dimensions
Minimum-bias events

- One of the very first measurements
 - Modelling of pileup event crucial for high p_T studies
 - extrapolating from Tevatron to LHC
 - in principle, only requires a few days of data
 - energy dependence of $dN/d\eta$?

PYTHIA favours $\ln^2 s$
PHOJET suggests $\ln s$

charged particle density at $\eta = 0$
Underlying event

- Also one of the very first measurements
 - Modelling of underlying event crucial for high p_T studies
- Look at tracks in the region transverse to jet activity

$$\eta < 2.5$$

$$p_T^{\text{track}} > 1 \text{ GeV}$$

$$|\eta_{\text{track}}| < 2.5$$

Can be used to tune simulations

different UE models can change the reconstructed top mass by up to 5 GeV
QCD event shapes 🇨🇦

- Event shape variables under investigation
 - special event shape variables for pp collision
 - for example: thrust

\[
T_{\perp, g} = \max \sum_{i} \frac{|p_{\perp, i} \cdot \vec{n}_{\perp}|}{\sum_{i} |p_{\perp, i}|}
\]

- Thrust found sensitive to underlying event MC tune
 - potentially, an independent method to tune the MC
Top Quark Production

LHC is a top factory...

\[\bar{t}t \text{ production} = 833 \text{ pb} \]
\[\approx 10^6 \bar{t}t \text{ pairs produced for } 1 \text{ fb}^{-1} \]

\[Wg \text{ fusion} \approx 245 \text{ pb} \]
\[Wt \text{ production} \approx 60 \text{ pb} \]
\[W^* \text{ channel} \approx 10 \text{ pb} \]

M. Lefebvre

Strategies for early physics, NSERC ATLAS Review, 15-16 Dec 2006
Top mass

- Reconstructed top mass, without b-tagging, with 150 pb$^{-1}$
 - aim at extremely simple and robust selection criteria
 - one isolated e or μ with $p_T > 20$ GeV
 - missing $E_T > 20$ GeV
 - exactly 4 jets
 - $\Delta R = 0.4$
 - $|\eta| < 2.5$
 - $p_T > 40$ GeV
 - cut efficiency $\sim 4.5\%$
 - top mass obtained from the three jets with the max p_T sum
 - systematics limited
 - in 175 GeV
 - out 167 +/- 0.8 GeV
Top mass from the fully hadronic channel

- Try to reconstruct the top mass from ttbar events in the fully hadronic channel (6 jets)
 - NLO: 369 pb
- Attempt without b-jet tagging
 - uses only calorimeter information
 - developing selection criteria
 - kinematic fit on 6 jets
- Background samples have been generated
 - QCD mlutijet
 - W + jets
 - non fully hadronic ttbar
- Preliminary results show that this is difficult to achieve
 - may need to use at least one b-tag
 - may also need to extend analysis using 5 jets
SUSY searches: effective mass

- Emphasis on R-parity conserving mSUGRA model
- Plan to perform both inclusive and exclusive searches
 - SM backgrounds include W/Z + jets, QCD multijets, $tt\bar{t}$ and single top
- Inclusive search example: effective mass
 - study of $M_{\text{eff}} = E_T^{\text{miss}} + P_{T1} + P_{T2} + P_{T3} + P_{T4}$

![Graph showing effective mass distribution with points and lines indicating Standard Model and SUSY SU3 models. The graph has a legend indicating points in bulk region with 0.1 fb$^{-1}$ data.]
SUSY searches: dilepton endpoint

- **Exclusive search example: dilepton endpoint**
 - search for the next to lightest SUSY particle (NLSP)
 - decay mode $\tilde{\chi}^0_2 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \tilde{\chi}^0_1 \ell^+ \ell^-$
 - look at M_{ll}: sharp edge (endpoint) expected

$$M_{ll}^{\text{max}} = M(\tilde{\chi}^0_2) \sqrt{1 - \frac{M^2(\tilde{\ell}_R)}{M^2(\tilde{\chi}^0_2)}} \sqrt{1 - \frac{M^2(\tilde{\chi}^0_1)}{M^2(\tilde{\ell}_R)}}$$

- for SU3, the endpoint is expected at 100.3 GeV
- flavour-subtracted
 - $e^+e^- + \mu^+\mu^- - e^+\mu^- - \mu^+e^-$
 - 2.45 fb$^{-1}$
SUSY searches: anomalous top production

- Physics BSM, such as SUSY, can lead to anomalous (non-SM) top quark production
 - can have different kinematic distributions than SM ttbar or single top
- Inclusive search for top quark production, non assuming SM kinematics, is under way
 - attempting to use hadronic top decays and constrained kinematic fit
 - W and top mass constraints
 - dominant background seems to be SM ttbar where one top decays semi-leptonically
- In some SUSY models anomalous top production can be a potential discovery channel below 1 fb⁻¹.
- Early’ish physics
Z’ and W’ studies

- Many theories predict new gauge bosons
 - backgrounds: ttbar, dijet, W+jets, Z+jets, dibosons, Drell-Yan
- Analyses involve muon and electron performance at very high $p_T (>1$ TeV)... “earlyish” physics.
- Example: $Z' \rightarrow ee$
 - here normalized for 10 fb$^{-1}$
Comments and Conclusions

- We are aggressively getting ready for first collisions
 - take advantage of our ATLAS detector expertise
 - ATLAS Canada computing in fast progress (see M. Vetterli’s talk)
 - we need to increase our presence at CERN

- Canadian involvement in early physics analyses
 - broad range of interests
 - trigger
 - jets, leptons, missing E_T signatures
 - SM processes
 - first search for evidence of BSM physics
 - integrated in ATLAS working groups
 - strong involvement in CSC notes preparation
 - frequent regional Canadian meetings
Total proton-proton Cross Section

\[
\sigma_{\text{tot}} = \sigma_{\text{elas}} + \sigma_{s.\text{dif}} + \sigma_{d.\text{dif}} + \sigma_{n.\text{dif}}
\]

Elastic: both hadrons are not broken up to form new hadrons.

Diffractive: one (or both) hadron gets excited to a more massive state with the same quantum numbers which subsequently decays, as in \(p \rightarrow N^* \rightarrow p\pi \).

A double pomeron exchange event is equivalent to a central diffractive event, a special type of **double diffractive** event.
The total cross section for $p\bar{p}$ and pp scattering

\[\sigma_{\text{tot}}(\text{mb})\]

The high energy behaviour follows $(\ln s)^{\gamma}$

- $\gamma = 2.2$ (best fit)
- $+1\sigma$
- $\gamma = 1.0$

Published in Eur.Phys.J.direct C4S1:13,2002
Top mass

- Top mass and the underlying event

Different underlying event models can shift the top mass by up to 5 GeV