
Canadian progress and plans in offline reconstruction, DQ assessment, and monitoring

NSERC Project Review of ATLAS TRIUMF 14 November 2008

Michel Lefebvre Physics and Astronomy **University of Victoria**

Outline

This presentation

reconstruction of high level and detector objects

- calorimeter clusters
- jets
- missing transverse energy
- muon

Data Quality and Monitoring

- Canadian activities
- remote monitoring farm
- remote LAr calorimeter monitoring
- jets
- TRT
- offline monitoring of trigger performance
- Dugan O'Neil's talk
 - reconstruction of high level objects
 - electron, photon, tau
 - beam tests
 - calibration: hadronic and jet energy scale

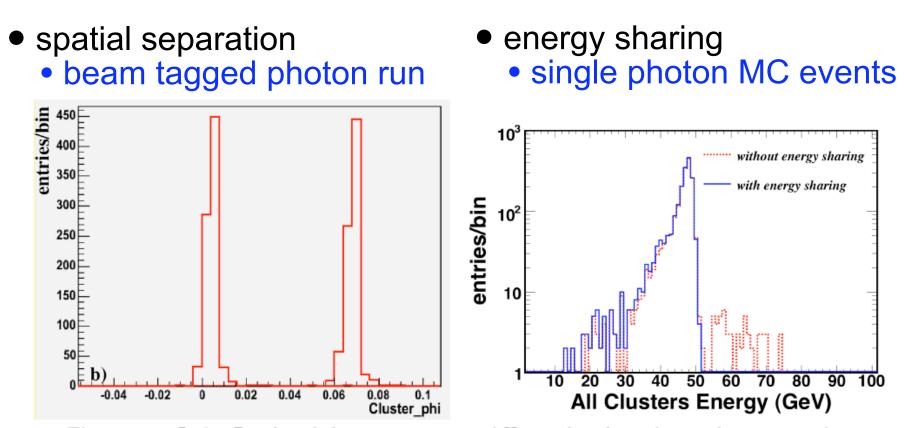
Calo Cluster Reconstruction

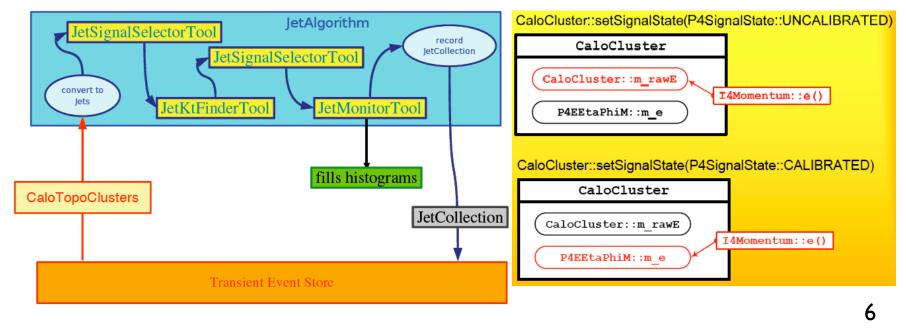
- EM calo clusters are essential for e/gamma reco
 - start from EM calo cells at EM energy scale
 - cells mapped on an eta-phi grid
 - look for pre-clusters using sliding window
 - eta and phi of pre-clusters used as seed for EM cluster finding

• recent improvements to EM cluster reco algorithm (UVic)

- possibility of different seed for EM cluster finding
 - pre-cluster eta and phi position
 - eta and phi position of clusters found using other clustering algorithms
 - reconstructed tracks
- flexibility in the steering of the EM clustering stages
- properly handle the sharing of cells between clusters

Calo Cluster Reconstruction




Figure 17: Left: Results of the reconstruction of H8 combined test-beam photon run, after adjustment of different stages in the EM cluster reconstruction showing the cluster ϕ -coordinate distribution. A peak centered around $\phi = 0$ corresponds to impinging photons while the other peak of the distribution origins from primary positrons. Right: Reconstructed total energy from 50 GeV single photon events without energy sharing (red dashed histogram) and with energy sharing (blue solid histogram).

Jet Reconstruction

- Jets will be part of nearly all ATLAS analyses
 - decay of new particles likely to produce jets
 - precision measurements such as top quark mass
- Jet reconstruction must satisfy many constraints
 - high reconstruction efficiency
 - low fake jet rate
 - good energy linearity and resolution over all eta range
 - robustness to pileup
- Canadians play a strong role
 - jet software co-convenor (Seuster, Delsart)
 - jet/E_T^{miss} reco task force co-convenor (Teuscher)
 - other important activities
 - MC simulation contact for Jet/E_T^{miss} working group (McGill)
 - jet monitoring (UVic)
 - jet algorithm implementation (UVic, IN2P3)

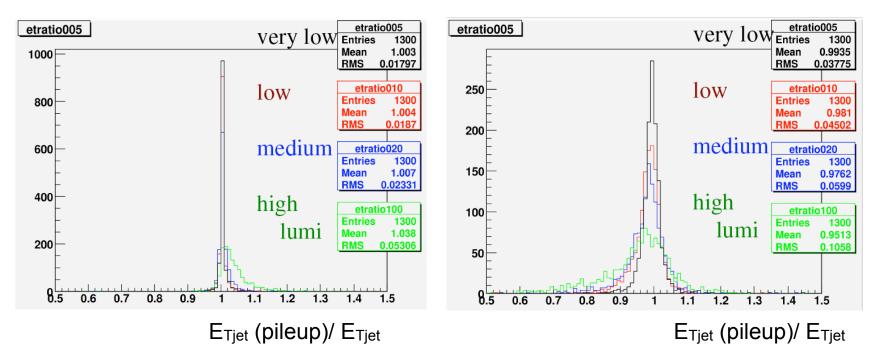
Jet Reco Software

- A lot of recent activities (UVic)
 - design improvement of jet event data model
 - including the merging of ParticleJet(AOD) and Jet(ESD) classes which has reduced maintenance efforts and improved software flexibility
 - jet (and also jet constituents) "signal states" (access calibrated and raw signal)
 - implementation of new features crucial for 1st data
 - performance optimization CPU and memory usage
 - code testing, maintenance, documentation

Jet Algorithms

- Various jet algorithms are implemented, including
 - seeded cone algorithms
 - recursive recombination (kT)
 - optimal jet finder (event shape)
- Various jet constituents can be considered
 - calorimeter cells
 - too many to be a practical solution
 - calorimeter towers (0.1 x 0.1 grid)
 imposes regular grid view on event (natural fro triggers!)
 - topological clusters
 - attempt to reconstruct particle showers
 - growing volume algorithm using seeds and signal threshold

Jet Reco with pileup


- Jet reconstruction should be robust to pileup
- Jet areas
 - measure of jet area (trivial only for some cone algos)
 - important for pileup subtraction studies
- Studies of jets + pileup
 - theoretical investigations with MC only adds pileup
 - ATLAS reconstruction of jet (MC and data) has
 - pulse shape and time structure
 - pileup affecting pulse shape
 - full reconstruction starting from pulse shape and optimal filtering coefficients
 - noise suppression included in jet
- Results indicate important role of noise suppression and detector effects
 - theoretical work predicts an increase in response with luminosity

• full reconstruction studies seem to indicate a small decrease of response with luminosity!

Jet Reco with pileup

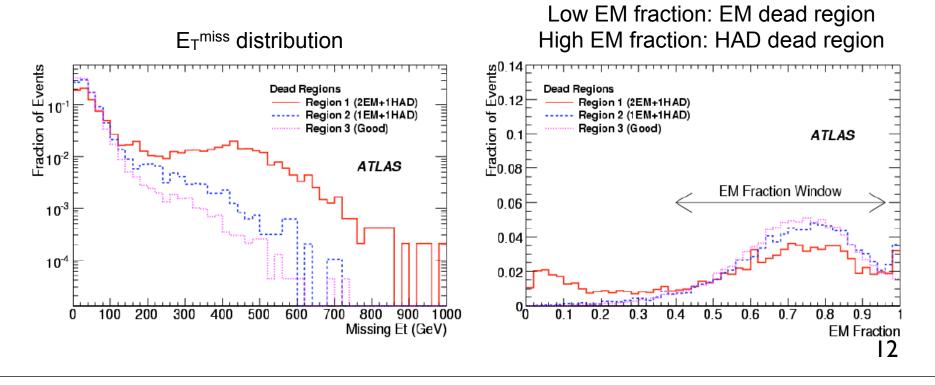
• Truth jet response increses with luminosity

Reco jet response decreases with luminosity!

4 luminosity setting: events per bunch crossing: 1.15, 2.3, 4.6, 23.0 This analysis used SISCone4, 25 ns bunch crossing, only hardest two jets in a dijet sample (p_T between 140 and 280 GeV)

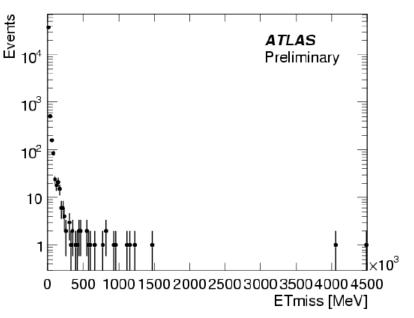
Fake E^{Tmiss} Studies - in Canada

- \bullet Missing transverse energy ($E_{T}{}^{miss})$ is a key signature for physics beyond the SM
- Global observable, sensitive to many detector effects
- Fake E_T^{miss} must be kept under control for early data
- Instrumental sources of fake E_T^{miss} include
 - mis-modeling of material distribution
 - mis-modeling of instrumental failures
- \bullet Fake E_{T}^{miss} studies can be performed by simulating potential hardware failures
 - high voltage reduction or trips
 - low voltage readout electronics failures
 - noise in calorimeter channels or regions
- Canadians produced fake E_T^{miss} data-cleaning tools
 - using EM calorimeter energy fraction
 - using calorimeter timing information
 - matching jets of charged tracks to calorimeter jets


Fake E_T^{miss} Studies - in Canada

- Using direct photon events (UVic, TRIUMF)
 - use momentum balance: get jet energy resolution
 - use two MC samples
 - a normal MC sample
 - a MC sample with instrumental effects introduced
 - compare jet energy resolution
 - establish corrections
 - study effect on ETmiss distribution
- Validate the method with ATLAS data
 - early data: use di-jet events
 - \bullet large cross section and small intrinsic $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$
 - later: expand to other processes

Fake Ermiss Studies - in Canada


- Using di-jet events (UVic, TRIUMF)
- Identify events with fake E^{Tmiss} for removal
 - look at EM fraction of calo jet in ET^{miss} direction
 can be used to suppress fake ETmiss background from cosmic ray events
 - look at ratio of E_T of track over E_T of jet

di-jet sample with simulated hardware failures

Fake E_T^{miss} Studies - in Canada

- Study fake E_T^{miss} due to cosmic ray events (Toronto)
 - possible source of large
 E^{miss}
 - large air showers
 - muons undergoing a hard bremsstrahlung

Reject fake E_T^{miss} due to cosmic ray events

use EM fraction method

- typically smaller for cosmic ray events
- exploit calorimeter timing resolution (about 1ns)

 need to prove that cosmic muon timing can be extracted in a jet event environment

Muon Reco Validation - in Canada

- Test muon chamber alignment (TRIUMF)
 - looking at fitted track segments in middle layer chambers
 - comparing to track position calculated from inner and outer layers, computing residual

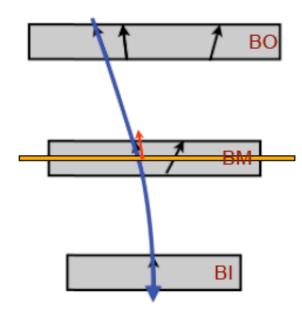


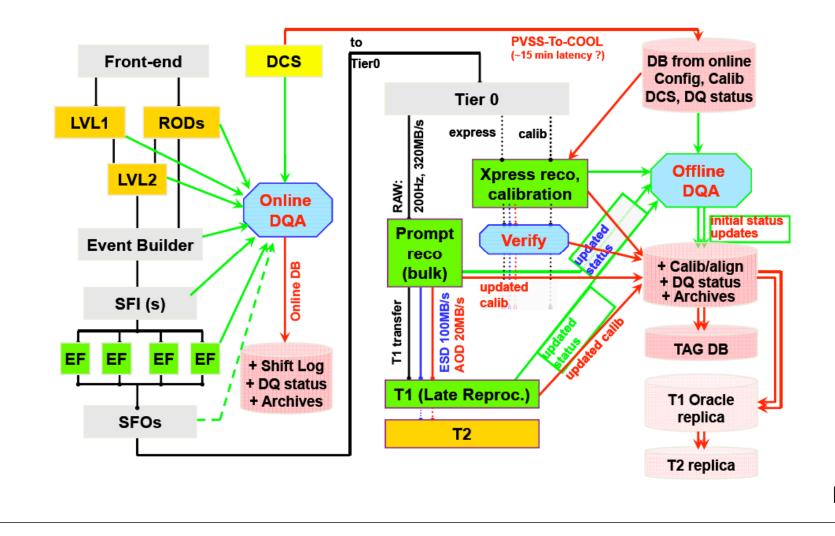
illustration of muon alignment monitoring concept

Muon Reco Validation - in Canada

- Method tested on
 - cosmics at TRIUMF Tier 1
 - on Monte Carlo $(Z \rightarrow \mu \mu)$
- Integrated new MuonAlignMonitoring package into Data Quality Assurance to test hourly updates of alignment constants from optical system
 - runs with offline reconstruction
- Gives resolution of order few 100 microns
 - goal is < 60 microns
 - survey gives mm so this is useful
- More developments ongoing
 - try using stiffer tracks for better performance
 - relative alignment between inner detector and muon system
 - core alignment software

Data Quality

Critical ATLAS activity for past three years

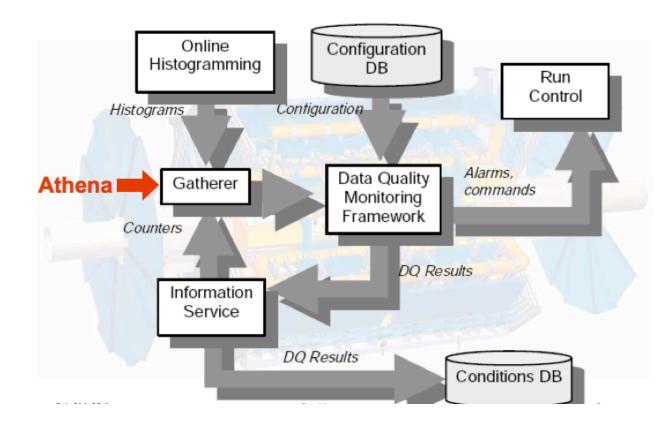

- DQM: Data quality monitoring
- DQA: Data quality assessment
- Sets of events (luminosity blocks) will be flagged for usefulness for data analysis
 - real-time problem detection
 - DQM of first full Tier 0 data processing
 - DQM of later Tier 1 data processing

Canadians active in DQ since inception of DQ tasks

- First ATLAS DQ coordinator: R. McPherson
 - policies
 - common tools
- HLT Tau
- HLT and offline E/gamma
- HLT and offline jets

Data Quality

• Online and offline event flow, including processing, calibration and data quality monitoring


Remote Monitoring Farm

 Sending events from ATLAS point 1 to a remote processor farm at UofAlberta for (online) monitoring

- CERN-based CPU dedicated to trigger processing
 partly funded by 2008 RTI
- network problem does not prevent ATLAS data taking
- assume 1% of events should be monitored
- Three phase approach (Alberta)
 - 1. run monitoring remotely on manually fetched files
 - 2. automatically migrate and run on recent files
 - 3. full integration into the ATLAS online
- Phase 1 fully achieved on local Alberta cluster
 - process dataset using multiple jobs on different machines
 - merge output histos using gatherer
- Working on phase 2
 - fetch files from TRIUMF

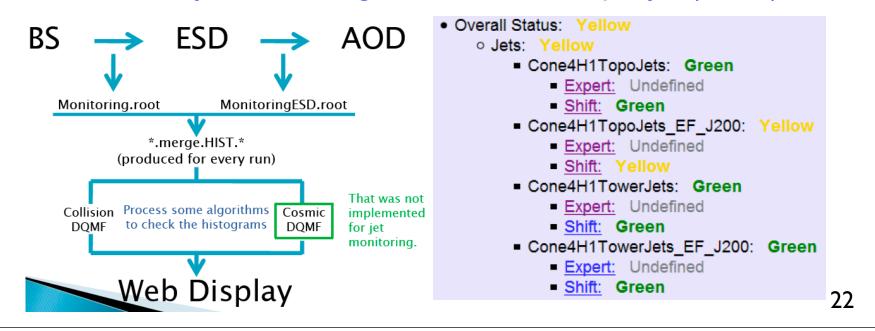
Remote Monitoring Farm

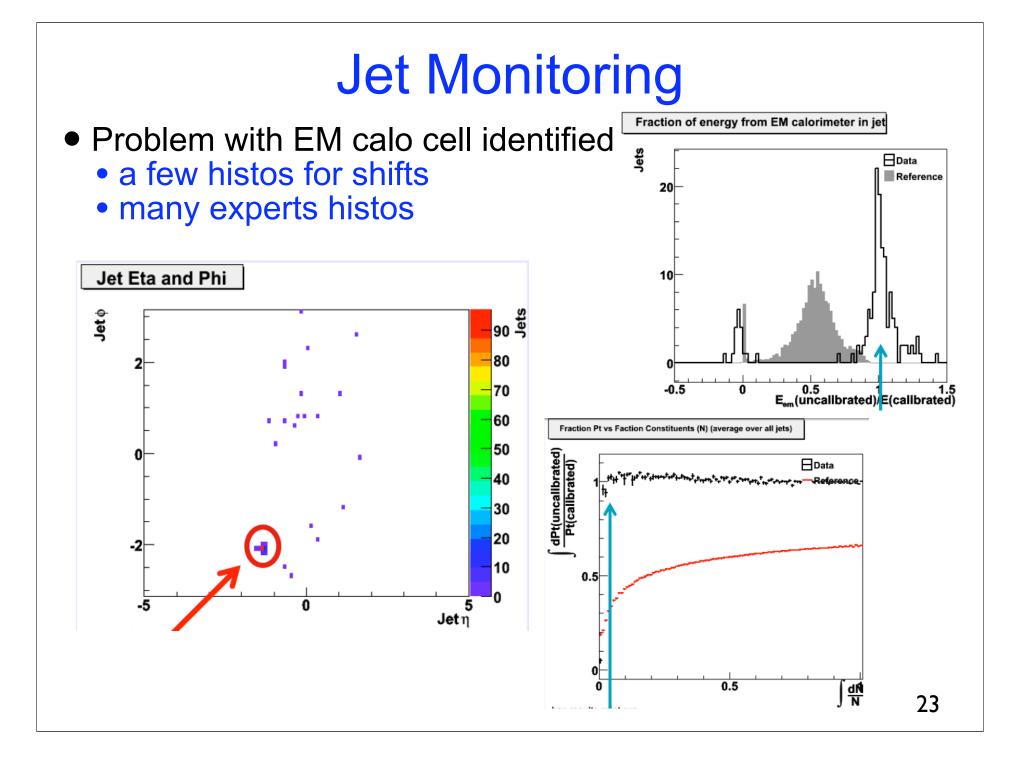
Online monitoring and DQMF

Remote LAr Monitoring

- Many involved in ATLAS-Canada (UVic, TRIUMF, SFU, Toronto)
- Experts need access to same information screens as shifter in ATLAS Control Room
 - But **NOT** desirable for people outside ATLAS Point 1 network to modify detector properties (HV etc.)
- Solution: mirror machine outside Point 1 network makes all information available to world (read-only passive monitoring)
 - Using NX-Server/Client (client is free, server runs on mirror at CERN) can monitor all detector quantities from TRIUMF, BNL or elsewhere, see same "desktop" as in Control Room
 - Building on successful off-site monitoring effort by Tile Calorimeter community at U. Chicago
- Infrastructure in place; beginning to run "shadow" LAr shifts at TRIUMF to learn strengths, limitations of system

Remote LAr Monitoring


• Remote monitoring desktop


	gpin obreenmentate	00 – TileCal Mon		
DAQPanel			_ D X	Run Status
Insert Here Some Info Script //data/ATLAS/scripts/setup.sh			Partition ATLAS Run Number 91900 Run State <mark>RUNNING</mark>	
Part Name ATLAS T Database File /data/ATLAS/database/ATLAS.data.xml T	spy	RC Status	Local Procs	Error State APPLICATION_ERROH Built Events 4196987 Active Time 26810 Detector Mask 0x41fc3ffffff7 \$
Setup Opt	ATLAS TDAQ Software Graphical User Interface - Status Display			
Oks Opt	<u>File Commands Access Control Tools Settings</u>			
MRS Filter	Partition 🤞			😬 🖧 🚷 🎿 🗰 🖼
OHP Opt h/user/o/ostelzer/offsite/LArMonitoringShifter.ohp.xml	Run control		- F	Monitor Segment & Resource Data Set
	RUN CONTROL	. STATE RUN	NING	Run Control Run Pa
	Shutdow	m Boo	τ	← <mark>RUNNING</mark> TRT ← RUNNING BCM
	Terminat	te Initial	ize	
OHP Panel	Unconfig	g Conf	ig	UP module_monitoring
Legacy Control Buttons	Stop	Star	τ	- RUNNING LTPIC
Dise in EM Sampling 0	Pause	Contir	nue 😑	► RUNNING Larg_EMBA
Entries 2438784 Mean 0	-Run Information			← RUNNING Larg_EMBC
н _д а н _а и Меалу 54,53 RMS 1.047 ☐	Run type	physics		RUNNING Larg_EMECA
RMS y 25.44	Run number	91900		RUNNING Larg_HECFCALA
	Lumi block			RUNNING Larg_EMECC
Partition ATLAS Name	Recording Run Start Time	Enable 19/10/08 16:02:00		RUNNING Larg_HECFCALC RUNNING LArMonitoringSegm
0nl. Servers LArHistogr	Run Stop Time	19,10,00 10.02.00		RUNNING LArMonitoringSegm RUNNING LAr-MDA
Off. Servers	Total run time	07:26:50		
Notifications		Number	Rate	► RUNNING RPC
General TDAQ C BAQPanel X OHP Nex General TDAQ A General X OHP Nex 3 4 ATLAS TDAQ Software Grap	US	17717907	477 H7	e:::1) ا

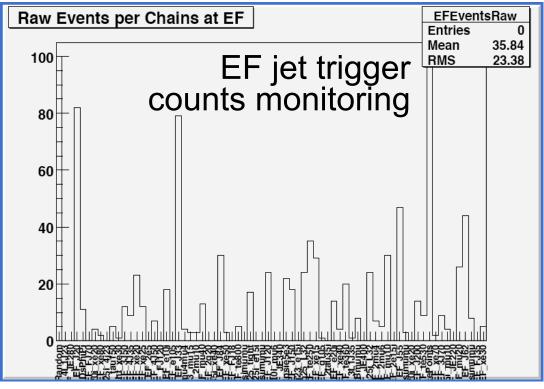
Jet Monitoring

- Most events contain jets: crucial quantity to monitor
- Jet monitoring helps identifying detector problems
 - clearly established during Full Dress Rehearsals
 simulated detector failures were injected in the mock data (UVic)

 - test of full processing chain
 - jet monitoring first to identify simulated calorimeter failures
- Software developed by UVic and UofArizona new improvements involve automatic checking and Data Quality Monitoring Framework displays (UVic)

TRT Data Quality

- TRT monitoring an DQ includes


 - real-time monitoring
 DAQ electronics, low-level DQ, high-level physics quantities
 - offline monitoring of detailed derived quantities
 time-distance calibrations, alignment, etc.
- TRT low-level data quality monitoring

 - Canadian responsibility (UBC)
 follows from role in TRT construction, commissioning and maintenance
- LVL1 trigger accept receives a 27-bit word for each straw that encodes the
 - time structure of charge arriving at the wire
 - transition radiation detected
- Monitored quantities include the bit-by-bit structure of these data words
 - knowledge of type and frequency of bit patterns crucial for optimum data reduction in ROD
 - growth in rare data patterns needs to be checked and acted upon

Offline monitoring of trigger

- Active ongoing work by Canadians
 - basic histograms for jet trigger DQ are available in Tier-1 processing
 - still need to fully implement a more refine offline analysis to do a more detailed DQA assessment:
 - correlating offline with trigger info from different levels
 - automatic assessment of turn-on curves

• etc

Summary

Strong Canadian involvement

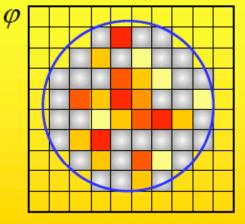
- reconstruction of high level and detector objects
 - electron, photon, tau, muon
 - calorimeter clusters
 - jets
 - missing transverse energy

data quality and monitoring

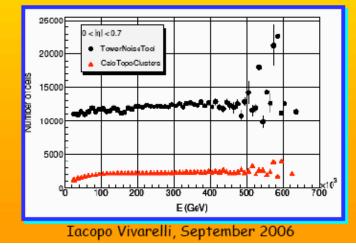
- pioneering role in DQ and monitoring
- remote monitoring farm
- remote LAr calorimeter monitoring
- TRT
- offline monitoring of trigger performance
- DQA and DQM of quantities crucial to ATLAS
 - high level objects
 - low level hardware performance

benefit from long involvement in beam tests

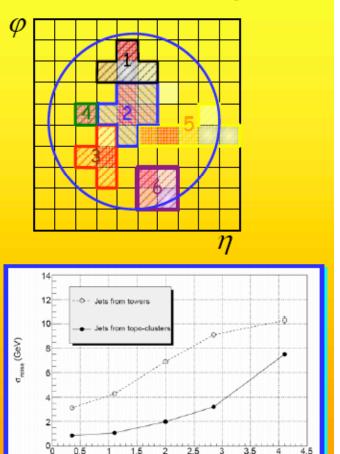
- calorimetry
- muon system
- calibration efforts
 - hadronic energy scale
 - jets, missing transverse energy
 - muon


Activities expected to increase with first collision data 26

Backup Slides


Why Cluster Jets At All?

Reduce noise contribution


Fixed cone tower jet

Fixed cone cluster jet

Iacopo Vivarelli, September 2006

Pseudorapidity

28