# Local Hadronic Calibration

Energy calibration strategy for ATLAS Calorimeters

ATLAS Hadronic Calorimeter Calibration Group 3<sup>rd</sup> ATLAS Physics Workshop in North America Boston, July 26-28, 2006

#### Previous Calorimeter Calibration workshops:

Munich, May 2-3, 2006 CERN, July 14-15, 2005 Tatranská Štrba, December 1-4, 2004

Next workshop: Barcelona, September 5-8, 2006 Michel Lefebvre Physics and Astronomy University of Victoria



## ATLAS LAr and Tile Calorimeters



3rd North American ATLAS Physics Workshop, Boston



3rd North American ATLAS Physics Workshop, Boston

# LAr Calorimeters

- EM Barrel
  - |η| < 1.4</li>
- EMEC
  - 1.375 < |η| < 3.2</li>

Tile

- |η| < 1.7
- HEC
  - 1.5 < |η| < 3.2</li>
- FCal
  - 3.2 < |η| < 4.9</li>

Varied granularity, techniques; many overlap regions

### **Design Physics Requirements**

### EM Calorimeters

- Benchmark channels  $H \rightarrow \gamma\gamma$  and  $H \rightarrow ZZ \rightarrow$  eeee require high resolution at  $\approx 100$  GeV and coverage to low  $E_T$
- b-physics: e reconstruction down to GeV range
- Dynamic range: mip to  $Z' \rightarrow ee$  at a few TeV
- Design goals for  $|\eta| < 2.5$ 
  - $\sigma(E)/E = 8-11 \%/\sqrt{E \oplus 0.2-0.4/E \oplus 0.7\%}$
  - Linearity better that 0.1%
- Hadron and Forward Calorimeters
  - Benchmark channels H → WW → jet jet X and Z/W/t require good jet-jet mass resolution
  - Higgs fusion → good forward jet tagging
  - EtMiss  $\rightarrow$  calibration, jet resolution, linearity
  - Design goals
    - $\sigma(E)/E = 50\%/\sqrt{E \oplus 3\%}$  for  $|\eta| < 3$
    - $\sigma(E)/E = 100\%/\sqrt{E \oplus 5\%}$  for 3 <  $|\eta| < 5$

3rd North American ATLAS Physics Workshop, Boston

## Hadronic Showers

### More complex than EM showers

- visible EM O(50%)
  - $e^{\pm}$ ,  $\gamma$ ,  $\pi^{o} \rightarrow \gamma \gamma$
- visible non-EM O(25%)
  - ionization of  $\pi^{\pm}$ , p,  $\mu^{\pm}$
- invisible O(25%)
  - nuclear break-up
  - nuclear excitation
- escaped O(2%)
- Only part of the visible energy is sampled



3rd North American ATLAS Physics Workshop, Boston

Brupen, Particle [

### Hadronic Shower

- Each component fraction depends on energy
  - visible non-EM fraction decreases with E
  - pion (and jets) response non linear with E  $\pi/e^{=1-(1-h/e)\left(\frac{E}{E_0}\right)^{m-1}}$

 $0.80 \le m \le 0.85$  $E_0 \approx 1 \text{ GeV for } \pi^{\pm}$  $E_0 \approx 2.6 \text{ GeV for } p$ 

- In ATLAS, e/h > 1 for each sub-detector
  - "e" is the intrinsic response to visible EM
  - "h" is the intrinsic response to visible non-EM
  - invisible energy is the main source of e/h > 1
- Large fluctuations of each component fraction
  - non-compensation amplifies fluctuations
- Hadronic calibration attempts to
  - provide some degree of software compensation
  - account for the invisible and escaped energy

### Local Calorimeter Calibration Flow

#### P. Loch



### Local Hadronic Calibration



3rd North American ATLAS Physics Workshop, Boston

### Clustering

### Topological clustering

- identify energy deposits in topologically connected cells
  - use cell signal significance criteria based on  $\sigma_{noise} = \sigma_{electronic} \oplus \sigma_{pileup}$
  - over the full calorimetry
  - correlated signals automatically taken into account
- offers noise suppression
- Seed, Neighbour, Perimeter cells (S,N,P)
  - seed cells with  $|E_{cell}| > S\sigma_{noise}$  (S = 4)
  - expand in 3D; add neighbours with  $|E_{cell}| > N\sigma_{noise}$  (N = 2)
    - merge clusters with common neighbours (N < S)</li>
  - add perimeter cells with  $|E_{cell}| > P\sigma_{noise}$  (P = 0)
  - (S,N,P) = (4,2,0) good for combined beam tests

## Clustering



10

### **Topocluster Threshold Tuning**



3rd North American ATLAS Physics Workshop, Boston

## **Cluster Splitting**

- Energy deposited by nearby sources can have overlapping clusters
  - split clusters (Sven Menke)
- Cluster splitter looks for local maxima in cluster
  - sought only in EM layers 2 and 3, and FCAL layer 0
  - maxima threshold set to E > 500 MeV
    - this is for nightlies and 12.0.2; Recent fixes improve bahaviour for jets in inner wheel and forward regions.
  - one cell can share energy between two clusters
- Aim at one cluster per isolated  $e^{\pm}$ ,  $\gamma$ ,  $\pi^{\pm}$

## **Cluster Classification**

Cluster classified as EM, hadronic, unknown

Select EM clusters using the correlation of

- $F_{\rm EM} = E_{\rm EM}/E_{\rm tot}$  from MC single  $\pi$  Calibration hits
- shower shape variables in single  $\pi$  MC events
  - $\lambda$  = cluster barycenter depth in calo
  - $\rho$  = energy weighted average cell density
- Current implementation (Sven Menke)
  - keep  $\mu_F$  and  $\sigma_F$  in bins of  $\eta$ , *E*,  $\lambda$ ,  $\rho$  of clusters
  - for a given cluster
    - if E < 0, then classify as unknown
    - lookup  $\mu_{\text{F}}$  and  $\sigma_{\text{F}}$  from the observables  $\eta,$  *E*,  $\lambda,$   $\rho$
    - cluster is EM if  $\mu_F$  +  $\sigma_F$  > 90%, hadronic otherwise

### **Cluster Classification**



- Use simulated single pions from 1 to 1000 GeV, uniform in η in full ATLAS
  - Reconstruct and classify clusters
  - Let  $R = E_{tot}/E^{reco}$ , where  $E_{tot}$  is from calib hits
  - keep  $W = \mu_R$  as a function of log( $E_{cluster}$ ), log( $\rho_{cell}$ ) for bins in  $|\eta_{cluster}|$  and cell sampling depth
    - average performed over all non-EM clusters, all events
- For a given cell in a hadronic cluster
  - lookup W in bins of  $|\eta_{cluster}|$ ,  $log(E_{cluster})$ ,  $log(\rho_{cell})$
- Results: weighting works for E<sub>clus</sub> > 10 GeV
  - $\hfill \hfill \hfill$

### Example

2.0 < |η| < 2.2, HEC layer 0</p>



### Weighting single pions: mean response

- do not include presampler and gap scintillators
- mean is improved for all energies



### Weighting single pions: resolution

- do not include presampler and gap scintillators
- resolution is improved for E > 50 GeV



3rd North American ATLAS Physics Workshop, Boston

### **Dead Material Corrections**

- Estimate cluster energy correction from dead material (DM) region
  - Correlate energy deposits in DM area (from calib hits) with functions of the reconstructed energies in cluster cells in samplings close to the DM area
  - 76000 6D (η, φ, ...) bins in 53 DM areas



### **Dead Material Corrections**

- For example, the energy between the tile and the LAr barrel (calib hits) correlates with the geometrical mean of the barrel back layer and the tile layer 0
- DM corrections are sought for energy deposited in DM in front and behind clusters, but not laterally outside the cluster



### **Dead Material Corrections**

Average energy in dead material deposited by 500 GeV single pion showers
Generated flat in |η| < 5. Energy summed in phi in this plot.</li>



### Application: simulated single pions

- Apply single  $\pi$  weights to non-EM clusters
- **Plot** sum of energies for clusters around the true  $\pi$  direction within  $\Delta R < 1$



## Application: simulated di-jet

- Apply single  $\pi$  weights to non-EM clusters
- Plot  $E/E_{truth}$  of two highest  $E_T$  jets with  $|\eta| \sim 0.3$



3rd North American ATLAS Physics Workshop, Boston

Jets made with k<sub>T</sub> algorithm, D parameter for k<sub>T</sub> = 0.6)

average energy for two highest
*E*<sub>T</sub> jets ~ 150 GeV, with rms ~
40 GeV

|                    | EM    | W     | W+DM  |
|--------------------|-------|-------|-------|
| «>(GeV)            | 0.753 | 0.841 | 0.935 |
| σ <b>(GeV)</b>     | 0.055 | 0.058 | 0.060 |
| σ <b>/‹&gt;(%)</b> | 7.3   | 6.9   | 6.5   |

response and resolution improve at each step

final response is 6.5% from MC truth match  $\rightarrow$  small out of jet correction

## Monte Carlo Validation

- Monte Carlo based calibration
  - MC must be able to reproduce data properties
- Activities
  - validate GEANT4 physics lists and detector description
  - compare basic observables for e,  $\pi$ ,  $\mu$ 
    - $0.2 < \eta < 1.8$
    - 2 < E < 180 GeV

Aim at using weighting and dead material corrections on data from 2004 combined test beam (also 2002?)

### Monte Carlo Validation

Energy distributions in barrel layers

• combined test beam 2004, 9 GeV e<sup>-</sup> and  $\pi^-$  at  $\eta = 0.45$ 



### Monitoring Cluster Classification in Jets

### very useful tools for assessing the validity of cluster classification, updated version now in CVS

14.2k events, 58k jets, J5 (280 <  $p_T$  < 560 GeV) with calib hits, ConeCluster jets *R*=0.7 build from CaloCalTopoCluster. 12.0.1.



## Plans and Ongoing Work

#### Cluster classification

- re-produce single particle (pion/electron) samples with 12.0.2, compare different options, performance on jets
- Weighting
  - extend and understand weight application to J1-J7 di-jets, more work on low energy, test different weighting approaches on pions, jets, CTB04

### Dead material correction

 re-run simulation with improved calibration hits, develop corrections for uncovered areas (HEC and FCAL), improve DM-cluster assignment, validate and try on single particles and jets

### Towards CDC

Close contact with jet-E<sub>T</sub><sup>miss</sup> for final in-situ calibration: use calibrated clusters to make jets, use single particle weights in J1-J7 di-jets samples, study the performance for ttbar, build feedback loop on insitu calibration and impact of detector imperfections

3rd North American ATLAS Physics Workshop, Boston

### Conclusions

• We have a local hadronic calibration scheme in place and results can be tested up to jet and  $E_{T}^{miss}$  reconstruction

- Validation and improvement efforts are ongoing on many fronts
- Next milestone: ATLAS Calorimeter Calibration Workshop, Costa Brava, 5-8 Sep 2006!