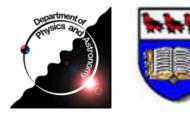
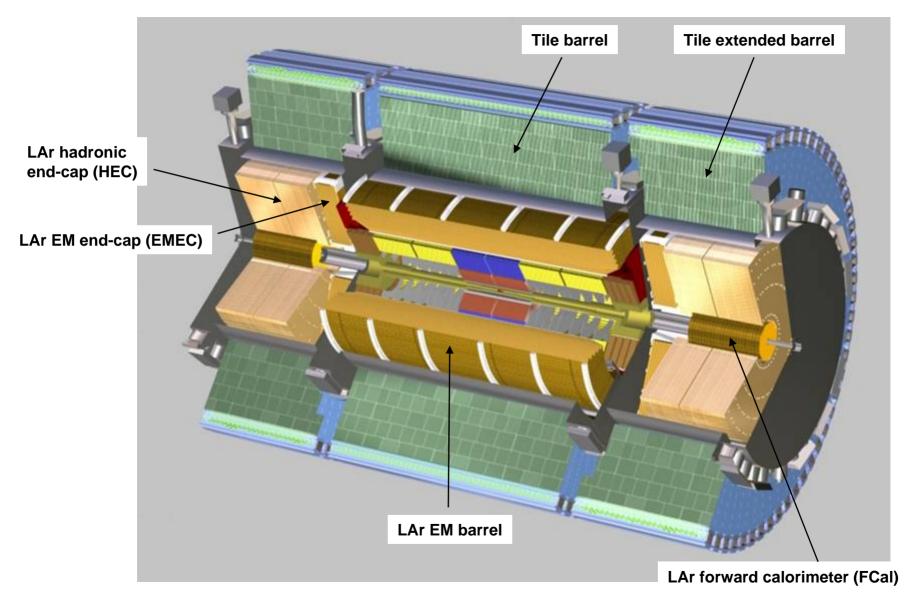
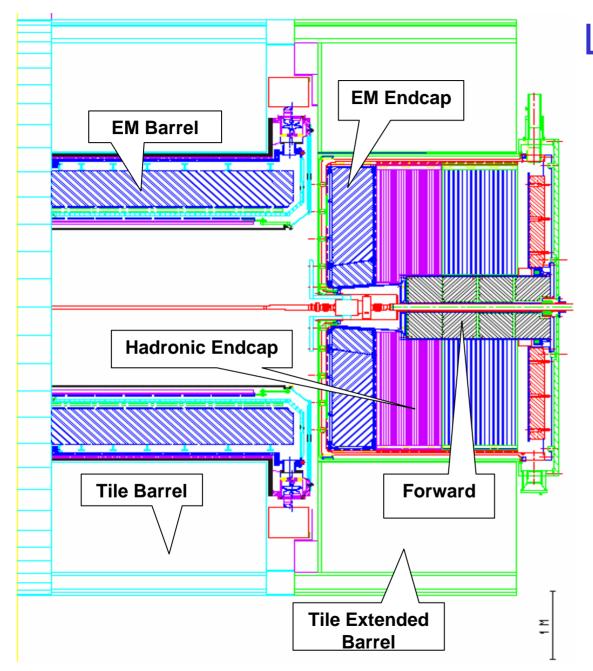
Hadronic Final State Reconstruction


- Local hadronic calibration
- Jet and EtMiss
 - reconstruction
 - calibration
 - validation

2nd ATLAS Physics Workshop in North America Toronto, August 1-2, 2005

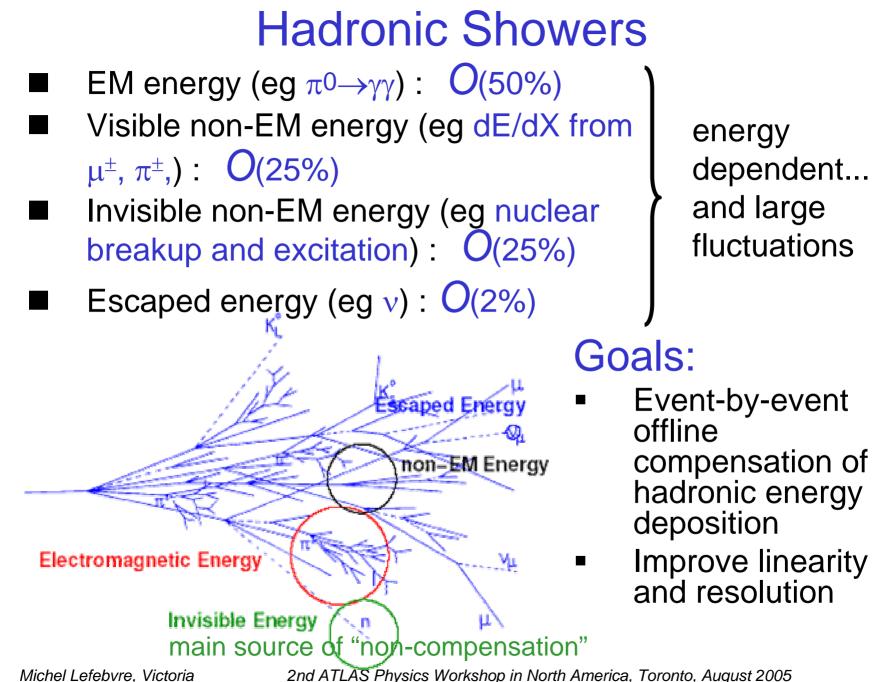

Michel Lefebvre Physics and Astronomy University of Victoria British Columbia, Canada

Recent Calorimeter Calibration workshops:


CERN, July 14-15, 2005 Tatranská Štrba, December 1-4, 2005

ATLAS LAr and Tile Calorimeters

Michel Lefebvre, Victoria


LAr Calorimeters

- EM Barrel
 - |η| < 1.4
- EMEC
 - 1.375 < |η| < 3.2
- Tile
 - |η| < 1.7
- HEC
 - 1.5 < |η| < 3.2
- FCal
 - 3.2 < |η| < 4.9

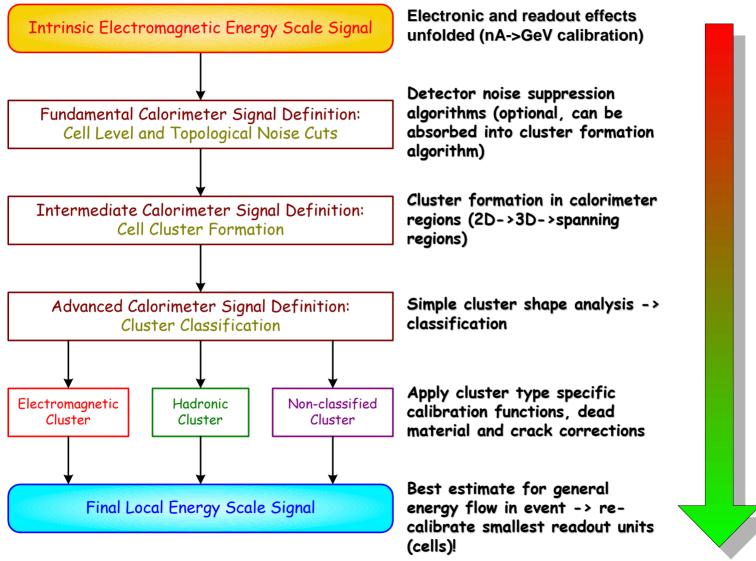
Varied granularity, techniques; many overlap regions

Design Physics Requirements

- EM Calorimeters
 - Benchmark channels $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow$ eeee require high resolution at ≈ 100 GeV and coverage to low E_T
 - b-physics: e reconstruction down to GeV range
 - Dynamic range: mip to $Z' \rightarrow ee$ at a few TeV
 - Design goals for $|\eta| < 2.5$
 - $\sigma(E)/E = 8-11 \%/\sqrt{E \oplus 0.2-0.4/E \oplus 0.7\%}$
 - Linearity better that 0.1%
- Hadron and Forward Calorimeters
 - Benchmark channels H → WW → jet jet X and Z/W/t require good jet-jet mass resolution
 - Higgs fusion \rightarrow good forward jet tagging
 - EtMiss \rightarrow calibration, jet resolution, linearity
 - Design goals
 - $\sigma(E)/E = 50\%/\sqrt{E \oplus 3\%}$ for $|\eta| < 3$
 - $\sigma(E)/E = 100\%/\sqrt{E \oplus 5\%}$ for 3 < $|\eta| < 5$

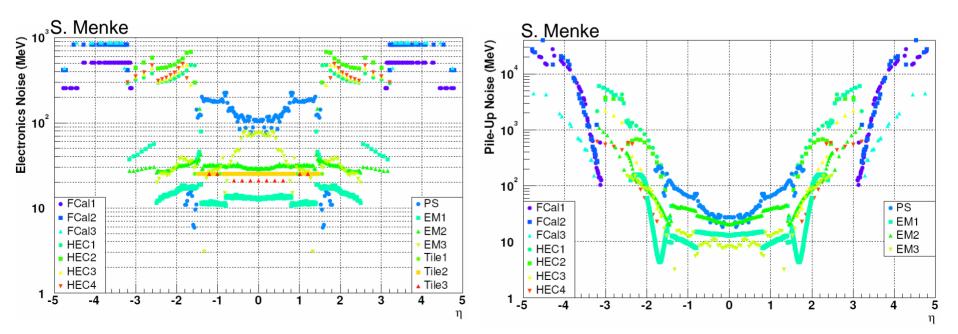
Calibration Strategy

- Local : calibration scheme to recover invisible (and escaped) energy (compensation) based on nature of localized energy deposits in calorimeters and aimed at
 - Being generally applicable
 - Minimizing
 - bias towards physics channels
 - systematic uncertainties ← Factorize dead material, leakage, etc...
 - Inter-calibrating sub-calorimeters
- Global: physics objects based calibration. Use full detector to correct analysis dependent effects (fragmentation, jet algorithms, bjets, min bias events...)


Linearity in energy response (E_{rec}/E_{True}=1) + Optimal Resolution

Hadronic Calibration Models

- Model I : Physics object based (Global):
 - first reconstruct hadronic final state physics objects (jets, missing Et) using calorimeter signals on a fixed (electromagnetic) energy scale (accepting the fact that these are ~30% too low, typically);
 - then calibrate the jets in situ using physics events
 - a priori using "MC Truth" in simulations for normalization
 - Model I is currently the most common approach in ATLAS physics studies. It is somewhat fragile, sensitive to fragmentation modeling, jet finding, etc.
- Model II : Detector-based objects (Local)
 - reconstruct calorimeter final state objects (clusters) first and calibrate those using a "local" normalization (reference local deposited energy in calorimeter)
 - reconstruct physics objects in this space of calibrated calorimeter signals
 - apply higher level corrections for algorithm inefficiencies determined in situ or a priori, as above
 - Model II has been the focus of our testbeam analysis, and we are studying it's applicability to ATLAS


Model II: Local Calorimeter Calibration Algorithm Flow

P. Loch

Noise Suppression

- see Rome Workshop talk by Sven Menke
- Sources of uncertainty in calorimeter cell signal:
 - intrinsic detector resolution
 - electronic noise (10 to 900 MeV)
 - pileup noise (4 MeV to 40 GeV @ 10³⁴ cm⁻²s⁻¹)

Noise Suppression Methods

- $|E_{cell}| > 2 \sigma_{noise}$ (EtMiss group)
 - well understood bias (K. Cranmer)
- JetTowerNoiseTool (F. Paige)
 - use in jet reconstruction
 - clever way of grouping towers before making jets such that negative energy towers are "cancelled" by nearby positive towers
- CaloTopoClusterMaker (S. Menke)
 - group cells which are topological neighbours
 - tries to account for the fact that true energy deposits are correlated
- LocalNoiseSuppressionTool (K. Cranmer)
 - Use Bayes theorem to decide whether or not a cell contains signal
- Studies have been performed (including B. Mellado et al, D. Cavalli & S. Resconi, A. Gupta)
 - EtMiss: events with only electronic noise, $Z \rightarrow vv$, $Z \rightarrow \tau\tau$
 - Jets

Noise Suppression Methods $|E_{cell}| > 2 \sigma_{noise}$

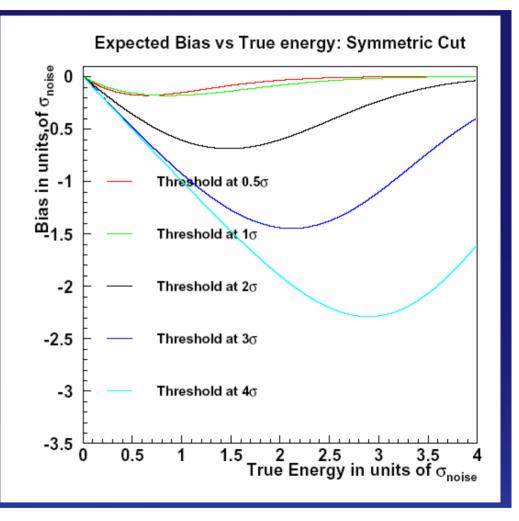
Default method for ETMis group was/is global symmetric cell level cut $|E_{\rm cell}| > 2 \sigma_{\rm noise}$

- this is o.k. for no expected signal (no bias, reasonable resolution)
- also o.k. for large signals since they will be accepted (including their noise) 0
- a bias $O(-0.6 \sigma_{\text{noise}})$ is introduced for small signals and tails of large signals (i.e. $E_{\text{cell}} = O(\sigma_{\text{noise}})$ which makes the bias signal dependent
- The plot on the right illustrates this bias.
- Shown is the expected distribution of a small signal (1.5 σ_{noise}) in the presence of noise
- The shaded area shows the region where the measured value is replaced by 0

I ne blue line snows the average reconstructed value		0.25			
True value ($\sigma_{\sf noise}$)	Bias (σ_{noise})	0.2			
		0.15			
0.0 1.0 1.5 2.0	0.00 -0.60 -0.69 -0.60	0.15 0.15 0.05 0 -4 -2 0 2 4 6 8 10 Expected Distribution for True Signal s = 1.5 (σ_{noise})			
			3.0	-0.23	
			4.0	-0.04	
			Menke, MPI München	Noise Suppression in ATLAS	Calorimetry ► ATLAS Physics Workshop, Rome

S.

2nd ATLAS Physics Workshop in North America, Toronto, August 2005


0.4

0.35

0.3

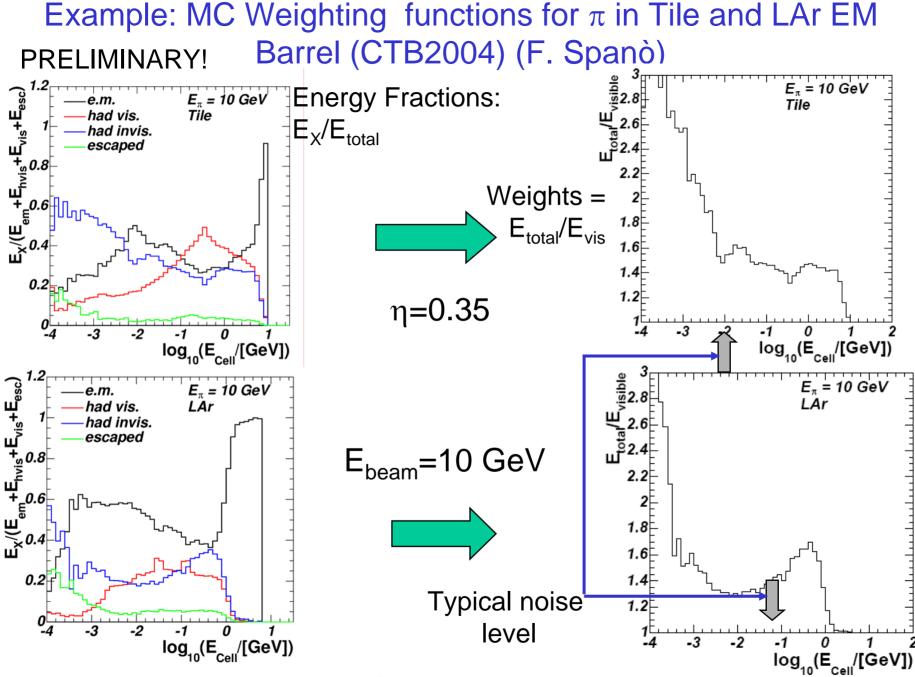
Noise Suppression Methods $|E_{cell}| > N \sigma_{noise}$

- Kyle Cramner made this nice plot showing the bias from a N σ symmetric cut for various N as a function of the signal
 - bias is always negative
 - worst bias for Signal = $O(N \sigma_{\text{noise}})$
 - magnitude of bias is larger for larger N

CalibrationHits

- hadronic weights to be produced using MC truth
- CalibrationHits
 - energy depositions in the detector (active and inactive parts) and in "dead" material (cryostat, etc.)
 - each energy deposition is classified:

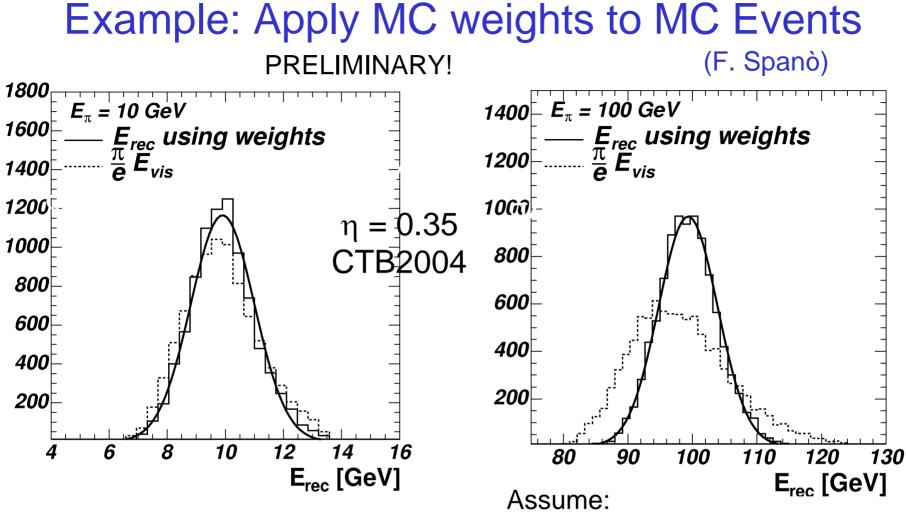
 - Visible EM
 Visible Non-EM
 E_{reco} is based on the visible energy in the active material only, corrected for the dE/dx sampling ratio
 - Invisible hadronic
 - Escaped
 - clearly need MC validation strategy


total

Hadronic Weights

- Set initial hadronic energy scale
- Cell weights in general depend on cluster observables
 - energy and energy density
 - cluster moments
- Initial attempts (2002 EMEC-HEC) only used energy density
 - weights obtained from data
 - see Tucson workshop
- Current efforts based on CalibrationHits
 - requires best possible detector description
 - requires best possible modeling of physics processes

$$E_{\rm cell}^{\rm reco} = w E_{\rm cell}$$


$$w = \frac{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}} + E_{\text{cell}}^{\text{non-em invis}} + E_{\text{cell}}^{\text{escaped}}}{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}}}$$

Michel Lefebvre, Victoria

2nd ATLAS Physics Workshop in North America, Toronto, August 2005

15

- Compare with simple "π/e" rescaling
- Linearity restored; need to improve resolution at low energy
- perfect detector,
- perfect dead material knowledge,
- beam energy knowledge

Hadronic Weights: Tasks

- Beam test data (2002 2004)
 - further MC validation
 - CalibrationHits validation and production
 - use OFC's to produce cell noise, and fill database
 - cluster classification
 - use calibration hits an further explore weighting schemes
 - cluster moments
 - multi-dimensional weights
 - dead material correction (for dead material inside clusters!)
 - using weights must not rely on knowledge of beam energy

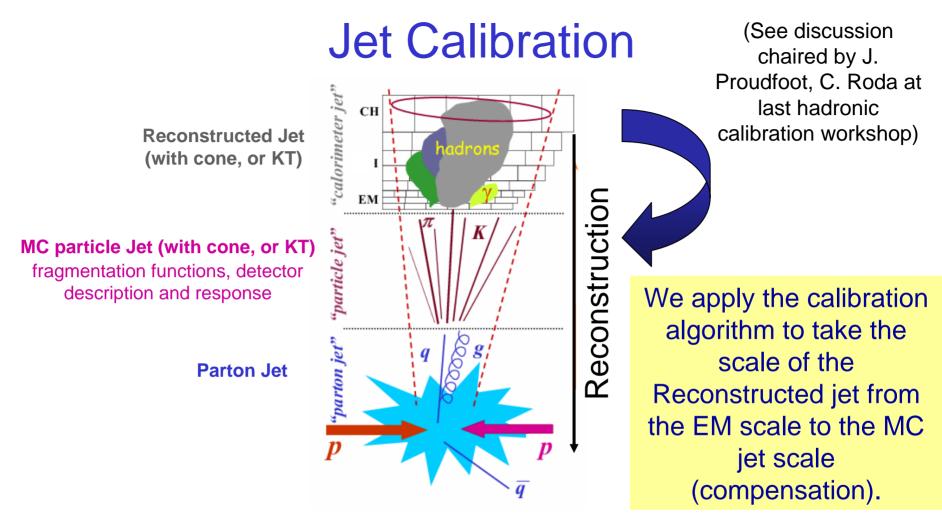
Hadronic Weights: Tasks

Full ATLAS simulation

- expand weighting schemes to all calorimeter areas
- understand the effect of pileup on the calibration scheme
 - how does the local calibration strategy perform in the presence of pileup?
- develop robust methods for the production of hadronic cell weights
 - can be quickly performed
 - resides in the repository, not in a private directory!
- develop methods for quick jet energy scale validation
 - use of transverse W mass spectrum in ttbar or similar

Software Framework Status

- All in place (or almost in place) in Athena to use beam test data and simulation
- Reconstruction
 - Signal reconstruction with OFC's
 - Cluster split/merge tools
 - Cluster moments
 - Noise tools
- GEANT4 simulation
 - Beam test setups and geometries
 - CalibrationHits
- Let's get to work!!

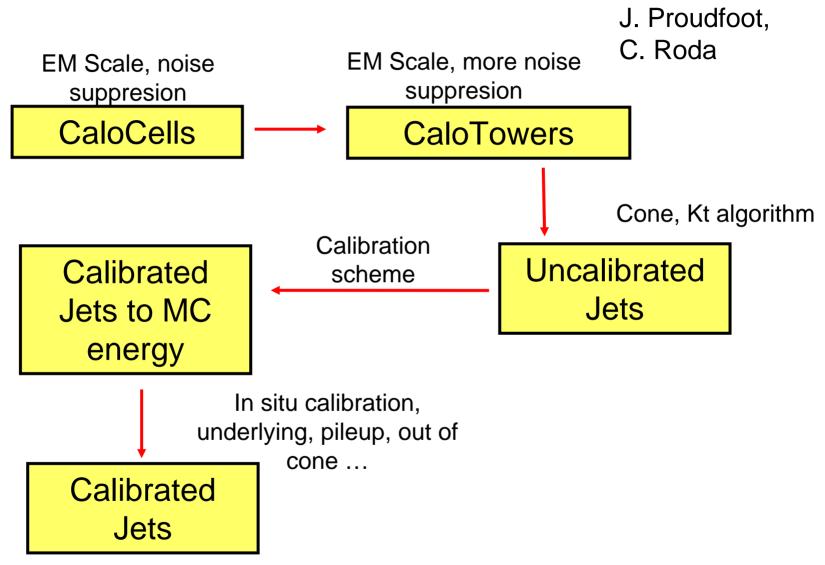

Local Hadronic Calibration: outlook

Personal views...

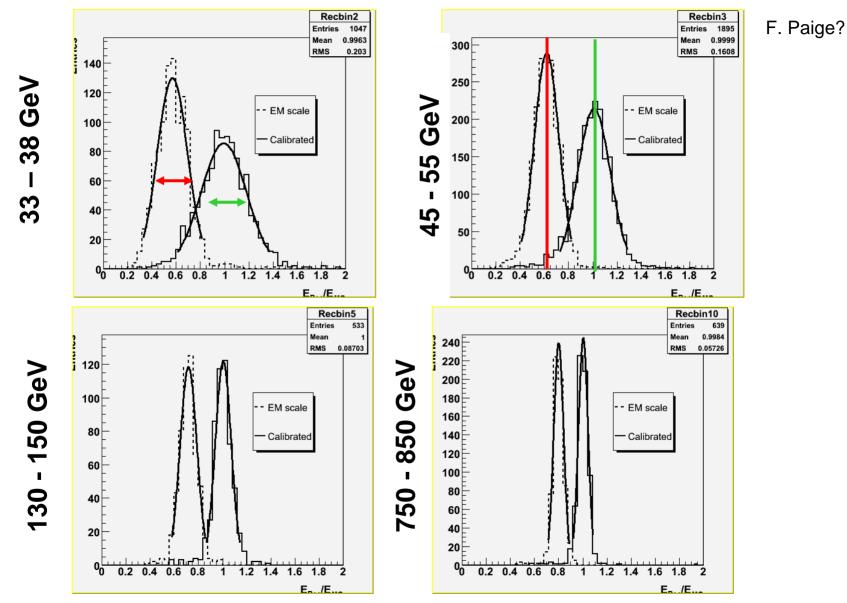
- the local calibration scheme (cells in TopoClusters) is very promising
- how independent from pileup can the validity of the local calibration be?
- It may well turn out that it local calibration makes a difference mainly in a limited part of the calorimeter where the readout cells are small
- It should be kept as simple as possible; it may not be practical to have cell weights depending on more than two (cell or cluster) parameters
- tables may turn out to be more adequate than parameterizations

Jet Reconstruction

- Currently, Jets can be reconstructed from collections of
 - MC particles
 - Calorimeter Towers
 - Calorimeter TopoClusters
 - Tracks
- Same algorithms applied to any collection
- Currently, three jet reconstruction algorithms are implemented in Athena:
 - Cone \rightarrow Simple (geometrically motivated) and fast.
 - KT → Theoretically accurate. Somewhat slower. Harder to calibrate.
 - Seed-less cone \rightarrow Theoretically accurate
 - Not much used due to speed issues in present implementations.

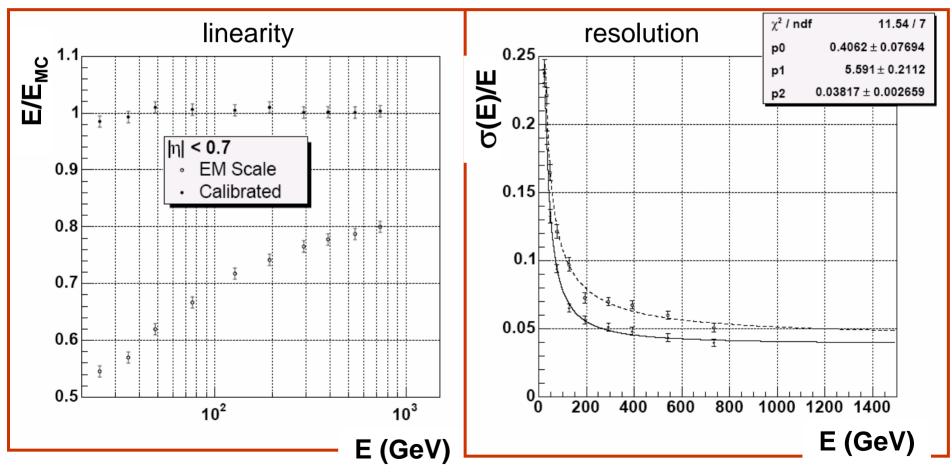


- does not correct for all algorithm effets (out of cone energy, ...)
- processes other than hard scatter contribute to jet energy: underlying event, noise, pileup.


Jet Calibration: status

- Three calibration methods have been developed independently (A.Gupta, F.Paige & S. Padhi, I.Vivarelli & C.Roda).
 - implemented in Athena
 - jets are calibrated to a MC truth based on MC particles
 - use E(jet), not Et(jet)
 - weights obtained by minimizing energy resolution with linearity constraint
 - the quality of the calibration is assessed by looking at the linearity and energy resolution before and after calibration in the different η regions
 - they differ with regards to noise suppression technique, the quantities used to obtain E_{reco} , the weight functions
- An approach based on TopoCluster classification is also being investigated (B. Mellado et al.)
 - needs to be integrated with the local hadronic calibration effort

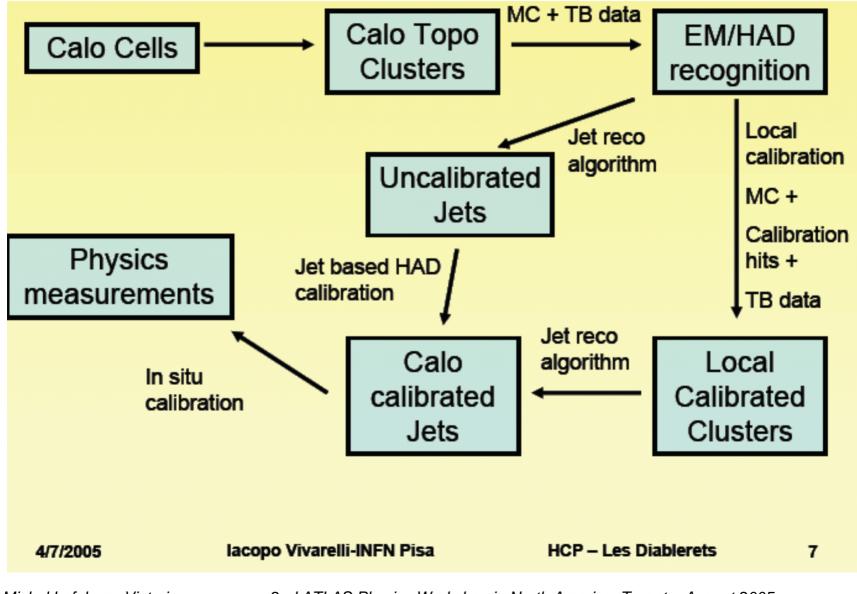
Present flow of Jet Calibration


Evaluation of linearity and resolution

Example Jet Calibration

- weights on cells in TopoClusters (JetCellECSTool)
- use cell position, energy and MC true total jet energy
- Rome sample, $\eta < 0.7$
- electronics noise included

Chiara Roda and Iacopo Vivarelli

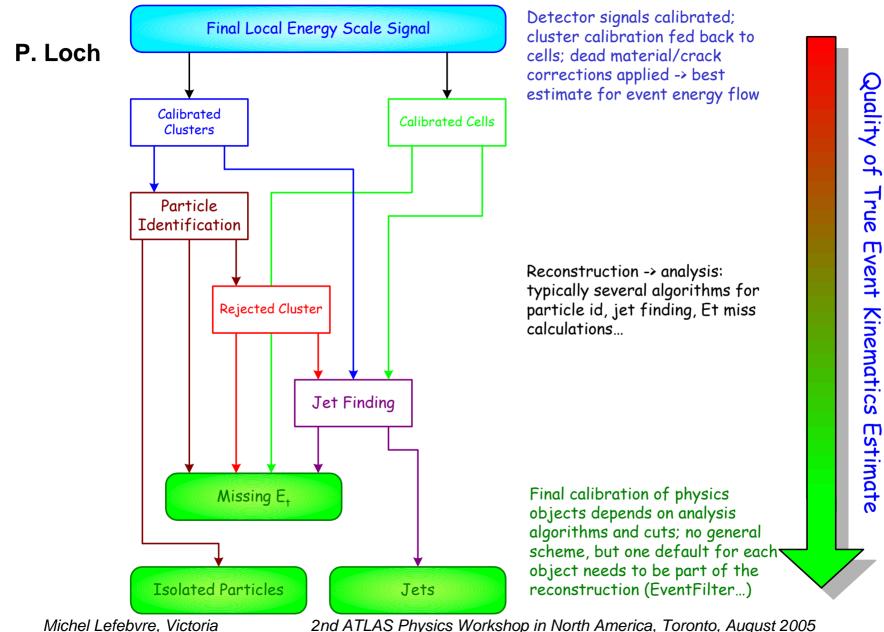

In-situ Jet Energy Scale Calibration

- Calibration of jet energy scale
 - in general this is process dependent
 - need to define clearly what "calibrating" means
 - to parton jet!
 - should correct for out of cone, underlying event
 - try to separate
 - detector effects: response, showering, coverage
 - physics effects: fragmentation, gluon radiations
 - should be after and on top of local hadronic calibration
 - one could argue that the local hadronic calibration coupled to the jet reconstruction should give a decent "light jet" energy scale, so that "light jet" energy scale corrections should be small
 - need to define clearly where/when are the pileup and noise bias effects taken into account

In-situ Jet Calibration

- p_T balance in γ/Z + jet events
 - see Rome Workshop talk by Caroline Deluca
 - potentially large statistics
- M_W constraint in top events
 - see Rome Workshop talk by Dominique Pallin
 - good for top mass reconstruction?...for other processes?
- Control samples?

Toward integration with HadronCalibration



Michel Lefebvre, Victoria

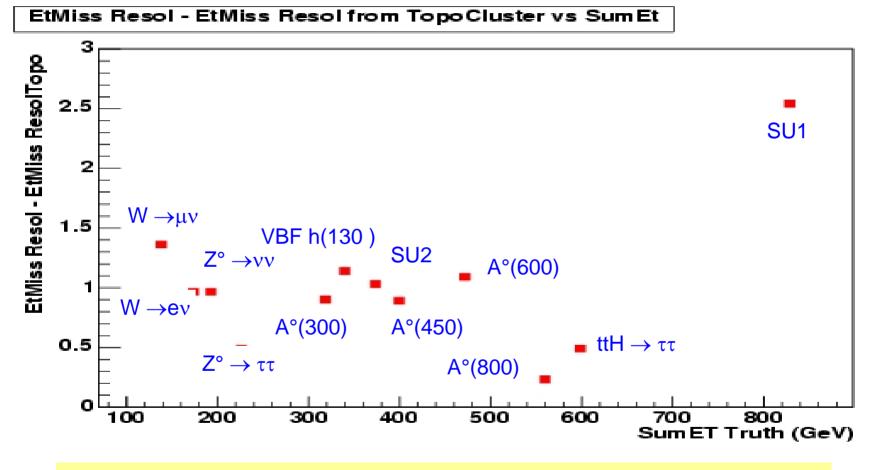
2nd ATLAS Physics Workshop in North America, Toronto, August 2005

29

From local energy scale signal to physics objects

Jets: Tasks

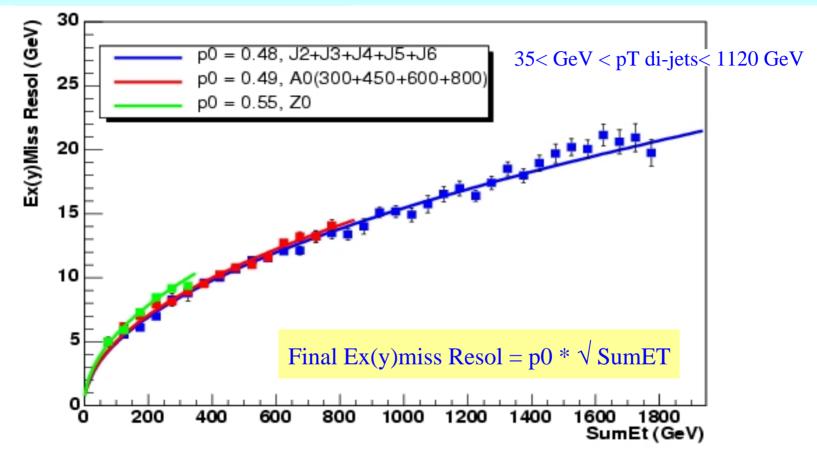
- Jet reconstruction algorithms
 - compare in detail the performance of the various algos (at EM energy scale); may need new algos
 - try using locally calibrated TopoClusters
 - develop methods for jet algorithm validation
 - are obvious jets being missed?
- Jet calibration studies (to MC jet)
 - should be easy to switch from one method to another
 - need to investigate effect of pileup and underlying event
 - systematic study of effects of electronics noise
- Jet energy scale calibration (to parton)
 - follow up with in-situ calibration
- Establish control samples
- At which level should electrons and muons in jets be treated?
 - at the event view!?


31

EtMiss Reconstruction

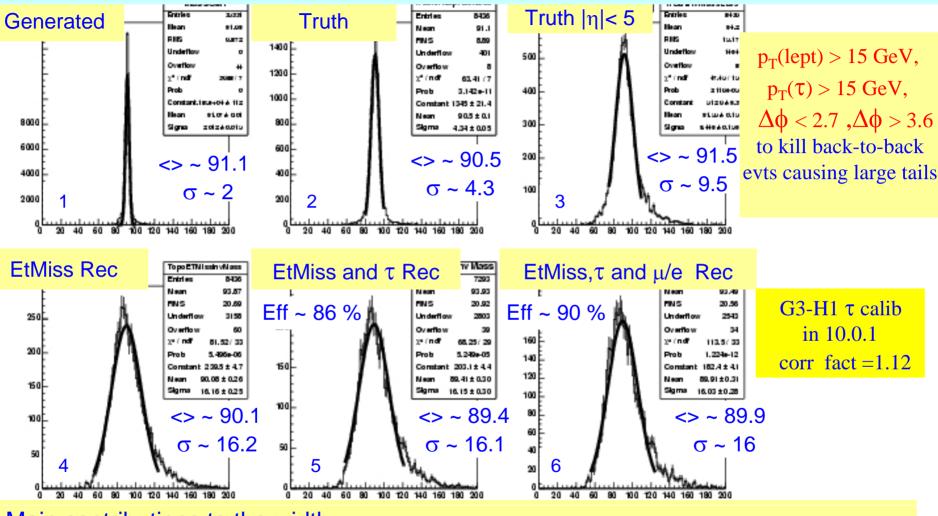
- see Rome workshop talk by S. Resconi
- A lot of work has been done at the cell level
- New results show that using TopoClusters (instead of cells) improves EtMiss performance, both shift and resolution (good noise suppression)
- Need to try again with (locally) calibrated TopoClusters
- Further work required to understand the effect (and treatment) of dead regions on EtMiss
- Preliminary results from Rome samples show that $Z^{\circ} \rightarrow \tau \tau \rightarrow \ell$ j EtMiss can be used for in-situ EtMiss calibration/validation

S. Resconi, ETmiss Performance in 10.0.1:


difference between EtMiss Resolution from all Cells with $|E_{cell}| > 2\sigma$ (noise) and EtMiss Resol from TopoCluster Cells (4/2/0) vs SumET Truth

Final EtMiss Resol = σ fit (MET_Truth (NonInt) – MET_Final) Resolution from TopoCluster always improves \Rightarrow better noise suppression

Michel Lefebvre, Victoria


S. Resconi, Rome Workshop: ETmiss Performance in 10.0.1: Ex(y)Miss Resol from TopoCluster vs SumET

In TDR: p0 ~ 0.46 ($Z^{\circ} \rightarrow \tau\tau$, $A^{\circ} \rightarrow \tau\tau$) current H1-style calibration is not optimal for low energy region, \Rightarrow needed a Topocluster based calibration to improve results

Michel Lefebvre, Victoria

S. Resconi: Commissioning: $Z^{\circ} \rightarrow \tau \tau \rightarrow$ lept-had channel study $\tau \tau$ invariant mass reconstruction from τ decay products

Main contributions to the width :

(2) Assumption on τ -decay prod directions , (3) Coverage effect , (4) EtMiss Resol Truth matching of reconstructed τ , μ , e

Michel Lefebvre, Victoria

EtMiss: Tasks

- EtMiss monitoring
 - with minimum bias events
 - time variations, luminosity changes
- Further develop EtMiss calibration/validation methods
- Need to try again with (locally) calibrated TopoClusters
- Further work required to understand the effect (and treatment) of dead regions on EtMiss
- Develop object-based EtMiss reconstruction (one for each event view?)

A few more comments...

- In our resources deployment we need to find a balance between two requirements:
 - the need for adequate calorimeter calibration on day-1
 - the need for the calibration framework to eventually reach the best possible performance
 - adaptable, robust
 - can be maintained and monitored
- Large (but very interesting!) task
 - cannot be done by one person
 - perhaps our biggest challenge is one of coordination
 - lots of expertise, lots of work already done
 - working groups: need well defined tasks, goals and milestones

Please let me know of any mistakes you may find in this talk, especially regarding credits!

Michel Lefebvre, Victoria

Local Hadron Calibration Strategy

Electronic Calibration (and EM scale

•Equalize detectors' response to energy **deposited** by electrons: common scale for Test Beam/ATLAS/DATA/MC (Noise Suppression)

Local Signal Definition

Cluster Formation and Classification

Specific

Weighting to

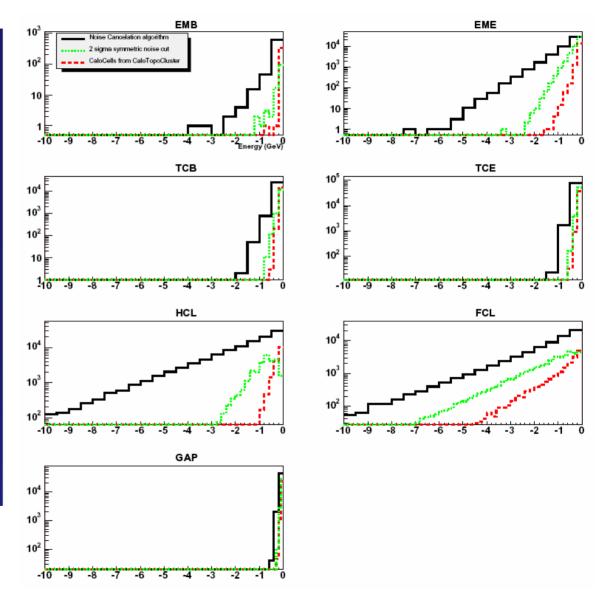
calibrate

Cluster

Reconstruction

Important Features

- Disentangle and factorize different effects
 - Discriminate em and had deposits
 - Local energy scale to separate separate signal calibration from acceptance/hardware corrections (dead material, containment...)
- Connect local energy "blobs" at Test Beam with those in jets: aim at extracting normalization from single particles


•From clusters :perform particle ID, build jets; apply final corrections (ID ,jet algorithm dependent) Noise suppression
Topological correlations to build energy blobs i.e.
localize energy deposit
Classification in e.m., had
based on cluster shape

 Signal Weighting: calibrate local energy depositions of had. clusters to compensate for e/pi

Final Physics Correct for acceptance and Dead Mat Calibration/

Noise Suppression Methods and Jets

- Ambreesh Gupta looked at Jet reconstruction for 3 different noise treatments with 100 k events from Rome samples J1-J8
 - the plots show how much negative energy is kept by each treatment in each detector region
 - JetTowerNoiseTool keeps largest amount of negative energy
 - CaloTopoClusterMaker keeps smallest amount of negative energy
 - global symmetric 2 σ_{noise} cut keeps slightly more than CaloTopoClusterMaker

