Tatranská Štrba, December 1-4, 2004 Munich, May 2-3, 2006 Barcelona, September 5-8, 2006

Michel Lefebvre Physics and Astronomy University of Victoria British Columbia, Canada

Next workshops:

CERN, July 14-15, 2005

Overview of Hadronic Calibration Strategies

- Hadronic calibration models
 - local hadronic calibration

Previous Calorimeter Calibration workshops:

- noise suppression
- hadronic weights
- Jets and EtMiss

Jet/EtMiss/Tau Workshop Victoria, December 1-2, 2005

ATLAS LAr and Tile Calorimeters

LAr Calorimeters

- EM Barrel
 - |η| < 1.4
- EMEC
 - 1.375 < |η| < 3.2
- Tile
 - |η| < 1.7
- HEC
 - 1.5 < |η| < 3.2
- FCal
 - 3.2 < |η| < 4.9

Varied granularity, techniques; many overlap regions

Michel Lefebvre, Victoria

Design Physics Requirements

- EM Calorimeters
 - Benchmark channels $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow$ eeee require high resolution at ≈ 100 GeV and coverage to low E_T
 - b-physics: e reconstruction down to GeV range
 - Dynamic range: mip to $Z' \rightarrow ee$ at a few TeV
 - Design goals for $|\eta| < 2.5$
 - $\sigma(E)/E = 8-11 \%/\sqrt{E \oplus 0.2-0.4/E \oplus 0.7\%}$
 - Linearity better that 0.1%
- Hadron and Forward Calorimeters
 - Benchmark channels H → WW → jet jet X and Z/W/t require good jet-jet mass resolution
 - Higgs fusion \rightarrow good forward jet tagging
 - EtMiss \rightarrow calibration, jet resolution, linearity
 - Design goals
 - $\sigma(E)/E = 50\%/\sqrt{E \oplus 3\%}$ for $|\eta| < 3$
 - $\sigma(E)/E = 100\%/\sqrt{E \oplus 5\%}$ for 3 < $|\eta| < 5$

Michel Lefebvre, Victoria

Calibration Strategy

- Local : calibration scheme to recover invisible (and escaped) energy (compensation) based on nature of localized energy deposits in calorimeters and aimed at
 - Being generally applicable
 - Minimizing
 - bias towards physics channels
 - systematic uncertainties ← Factorize dead material, leakage, etc...
 - Inter-calibrating sub-calorimeters
- Global: physics objects based calibration. Use full detector to correct analysis dependent effects (fragmentation, jet algorithms, bjets, min bias events...)

Linearity in energy response (E_{rec}/E_{True}=1) + Optimal Resolution

Hadronic Calibration Models

- Model I : Physics object based (Global):
 - first reconstruct hadronic final state physics objects (jets, missing Et) using calorimeter signals on a fixed (electromagnetic) energy scale (accepting the fact that these are ~30% too low, typically);
 - then calibrate the jets in situ using physics events
 - a priori using "MC Truth" in simulations for normalization
 - Model I is currently the most common approach in ATLAS physics studies. It is somewhat fragile, sensitive to fragmentation modeling, jet finding, etc.
- Model II : Detector-based objects (Local)
 - reconstruct calorimeter final state objects (clusters) first and calibrate those using a "local" normalization (reference local deposited energy in calorimeter)
 - reconstruct physics objects in this space of calibrated calorimeter signals
 - apply higher level corrections for algorithm inefficiencies determined in situ or a priori, as above
 - Model II has been the focus of our testbeam analysis, and it's applicability to ATLAS is under investigation

Local Calorimeter Calibration Algorithm Flow

P. Loch

Noise Suppression

- see Rome Workshop talk by Sven Menke
- Sources of uncertainty in calorimeter cell signal:
 - intrinsic detector resolution
 - electronic noise (10 to 900 MeV)
 - pileup noise (4 MeV to 40 GeV @ 10³⁴ cm⁻²s⁻¹)

Michel Lefebvre, Victoria

Noise Suppression Methods

- $|E_{cell}| > 2 \sigma_{noise}$ (EtMiss group)
 - well understood bias (K. Cranmer)
- JetTowerNoiseTool (F. Paige)
 - use in jet reconstruction
 - clever way of grouping towers before making jets such that negative energy towers are "cancelled" by nearby positive towers
- CaloTopoClusterMaker (S. Menke)
 - group cells which are topological neighbours
 - tries to account for the fact that true energy deposits are correlated
- LocalNoiseSuppressionTool (K. Cranmer)
 - Use Bayes theorem to decide whether or not a cell contains signal
- Studies have been performed (including B. Mellado et al, D. Cavalli & S. Resconi, A. Gupta)
 - EtMiss: events with only electronic noise, $Z \rightarrow vv$, $Z \rightarrow \tau\tau$
 - Jets

CalibrationHits

- hadronic weights to be produced using MC truth
- CalibrationHits
 - energy depositions in the detector (active and inactive) parts) and in "dead" material (cryostat, etc.)
 - each energy deposition is classified:

 - Visible EM
 Visible Non-EM
 E_{reco} is based on the visible energy in the active material only, corrected for the dE/dx sampling ratio
 - Invisible hadronic
 - Escaped
 - clearly need MC validation strategy

total

Hadronic Weights

- Set initial hadronic energy scale
- Cell weights in general depend on cluster observables
 - energy and energy density
 - cluster moments
- Initial attempts (2002 EMEC-HEC) only used energy density
 - weights obtained from data
 - see Tucson workshop
- Current efforts based on CalibrationHits
 - requires best possible detector description
 - requires best possible modeling of physics processes

$$E_{\rm cell}^{\rm reco} = w E_{\rm cell}$$

$$w = \frac{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}} + E_{\text{cell}}^{\text{non-em invis}} + E_{\text{cell}}^{\text{escaped}}}{E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}}}$$

Hadronic Weights: ongoing work

- Beam test data (2002 2004)
 - MC validation
 - CalibrationHits validation and production
 - use OFC's to produce cell noise, and fill database
 - cluster classification
 - use calibration hits an further explore weighting schemes
 - cluster moments
 - multi-dimensional weights
 - dead material correction (for dead material inside clusters!)
 - using weights must not rely on knowledge of beam energy

Hadronic Weights: ongoing work

Full ATLAS simulation

see Kai's talk

- expand weighting schemes to all calorimeter areas
- understand the effect of pileup on the calibration scheme
 - how does the local calibration strategy perform in the presence of pileup?
- develop robust methods for the production of hadronic cell weights
 - can be quickly performed
 - resides in the repository, not in a private directory!
- develop methods for quick jet energy scale validation
 - use of transverse W mass spectrum in ttbar or similar
- dead material corrections: local hadronic calibration vs jet and EtMiss calibration

Software Framework Status

- All in place in Athena to use beam test data and simulation
- Reconstruction
 - Signal reconstruction with OFC's
 - Cluster split/merge tools
 - Cluster moments
 - Noise tools
- GEANT4 simulation
 - Beam test setups and geometries
 - CalibrationHits

Local Hadronic Calibration: outlook

Personal views...

- the local calibration scheme (cells in TopoClusters) is very promising
- how independent from pileup can the validity of the local calibration be?
- It may well turn out that it local calibration makes a difference mainly in a limited part of the calorimeter where the readout cells are small
- It should be kept as simple as possible; it may not be practical to have cell weights depending on more than two (cell or cluster) parameters
- tables may turn out to be more adequate than parameterizations

From local energy scale signal to physics objects

Michel Lefebvre, Victoria

Jet Reconstruction

- Currently, Jets can be reconstructed from collections of
 - MC particles
 - Calorimeter Towers

see Peter's talk

- Calorimeter TopoClusters
- Tracks
- Same algorithms applied to any collection
- Currently, four jet reconstruction algorithms are implemented in Athena: see Rolf's talk
 - Cone \rightarrow Simple (geometrically motivated) and fast.
 - KT \rightarrow Theoretically accurate. Somewhat slower. Harder to calibrate.
 - Seed-less cone \rightarrow Theoretically accurate
 - Not much used due to speed issues in present implementations.
 - Midpoint

Jet Calibration: status

- Calibration methods (not using local hadronic calibration) have been developed independently (A.Gupta, F.Paige & S. Padhi, I.Vivarelli & C.Roda).
 - implemented in Athena

see Sanjay's talk

- jets are calibrated to a MC truth based on MC particles
- use E(jet), not Et(jet)
- weights obtained by minimizing energy resolution with linearity constraint
- the quality of the calibration is assessed by looking at the linearity and energy resolution before and after calibration in the different η regions
- they differ with regards to noise suppression technique, the quantities used to obtain E_{reco} , the weight functions
- Approaches based on TopoCluster classification and local hadronic weights are being investigated
 - see Kai's talk

Michel Lefebvre, Victoria

In-situ Jet Energy Scale Calibration

- Calibration of jet energy scale
 - in general this is process dependent
 - need to define clearly what "calibrating" means
 - to parton jet!
 - should correct for out of cone, underlying event
 - try to separate
 - detector effects: response, showering, coverage
 - physics effects: fragmentation, gluon radiations
 - should be after and on top of local hadronic calibration
 - one could argue that the local hadronic calibration coupled to the jet reconstruction should give a decent "light jet" energy scale, so that "light jet" energy scale corrections should be small
 - need to define clearly where/when are the pileup and noise bias effects taken into account

In-situ Jet Calibration

- p_T balance in γ/Z + jet events
 - see Rome Workshop talk by Caroline Deluca
 - potentially large statistics
- M_W constraint in top events
 - see Rome Workshop talk by Dominique Pallin
 - good for top mass reconstruction?...for other processes?
- E/p constraint from $\tau^{\pm} \rightarrow \pi^{\pm} \nu$ in Z $\rightarrow \tau \tau$
 - see Jiansen's talk
- Control samples?

Toward integration with HadronCalibration

Michel Lefebvre, Victoria

Jets: Tasks

- Jet reconstruction algorithms
 - compare in detail the performance of the various algos (at EM energy scale); may need new algos
 - try using locally calibrated TopoClusters
 - develop methods for jet algorithm validation
 - are obvious jets being missed?
- Jet calibration studies (to MC jet)
 - should be easy to switch from one method to another
 - need to investigate effect of pileup and underlying event
 - systematic study of effects of electronics noise
- Jet energy scale calibration (to parton)
 - follow up with in-situ calibration
- Establish control samples
- At which level should electrons and muons in jets be treated?
 - at the event view !? See Rob Duxfield's talk JetRec phone meeting 30 Nov 2005

EtMiss Reconstruction

- see Rome workshop talk by S. Resconi
- A lot of work has been done at the cell level
- New results show that using TopoClusters (instead of cells) improves EtMiss performance, both shift and resolution (good noise suppression)
- Need to try again with (locally) calibrated TopoClusters
- Further work required to understand the effect (and treatment) of dead regions on EtMiss
- Preliminary results from Rome samples show that $Z^{\circ} \rightarrow \tau \tau \rightarrow \ell$ j EtMiss can be used for in-situ EtMiss calibration/validation
- Object-based reconstruction (see Bruce's talk)

EtMiss: more work...

- EtMiss monitoring
 - with minimum bias events
 - time variations, luminosity changes
- Further develop EtMiss calibration/validation methods
- Need to try again with (locally) calibrated TopoClusters
- Further work required to understand the effect (and treatment) of dead regions on EtMiss

A few more comments...

- In our resources deployment we need to find a balance between two requirements:
 - the need for adequate calorimeter calibration on day-1
 - the need for the calibration framework to eventually reach the best possible performance
 - adaptable, robust
 - can be maintained and monitored
- Large (but very interesting!) task
 - cannot be done by one person
 - perhaps our biggest challenge is one of coordination
 - lots of expertise, lots of work already done
 - working groups: need well defined tasks, goals and milestones