| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
|              |                      |                    |                      |                    |            |

## Physics in Science Fiction SPACE Program (20)

### Samuel de Jong

Department of Physics and Astronomy University of Victoria

July 23, 2014

Samuel de Jong

University of Victoria

| Introduction<br>●○○ | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|---------------------|----------------------|--------------------|----------------------|--------------------|------------|
| Introduction        |                      |                    |                      |                    |            |

## **Science Fiction**

- What is science fiction?
- A genre of fiction dealing with imaginative concepts such as:
  - Futuristic technology
  - Space travel
  - Time travel
  - Extraterrestrial life
  - And many others.
- Often when we read (or watch) science fiction, we have to suspend our belief (especially as scientists)

| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Introduction |                      |                    |                      |                    |            |

## Hard Science Fiction

- There is a special brand of science fiction, called hard sci-fi, which attempts to keep a solid scientific basis.
- Authors try to accurately portray settings and situations using known science, usually physics, chemistry and biology.
- Sometimes elements beyond our science are included (such as faster than light travel, communication).

| Introduction | <b>Ringworld</b><br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|-----------------------------|--------------------|----------------------|--------------------|------------|
| Introduction |                             |                    |                      |                    |            |
|              |                             |                    |                      |                    |            |

### I've taken the settings of 4 science fiction books:

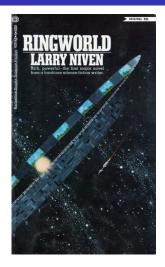
- Ringworld by Larry Niven.
- The Integral Trees also by Larry Niven.
- Rendezvous with Rama by Arthur C. Clarke.
- Mission of Gravity by Hal Clement.
- I've attempted to the physics calculations behind these settings to see if they make any sense.

Introduction

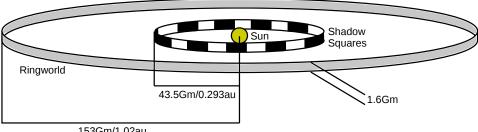
Ringworld The In:

The Integral Trees

Rendezvous with Rama


Mission of Gravit

Conclusion


#### Introduction

# Ringworld

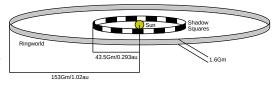
- Written by Larry Niven.
- First published in 1970.
- Won both the Hugo and Nebula awards.
- Follows the adventures of a human, Louis Wu, as he is recruited to explore the Ringworld.



| Introduction | Ringworld<br>○●○○○○○ | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Parameters   |                      |                    |                      |                    |            |
| The Ri       | ngworld              |                    |                      |                    |            |
|              |                      |                    |                      |                    |            |



153Gm/1.02au


Samuel de Jong

University of Victoria

| Introduction | Ringworld<br>○○●○○○○ | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Parameters   |                      |                    |                      |                    |            |

### The Ringworld is massive:

- 153 million km in radius.
- 1.6 million km wide.
- Surface area of 1.5×10<sup>15</sup>km<sup>2</sup>



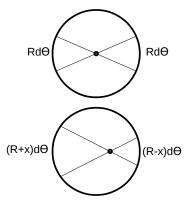
- 3 million times the surface area of earth!
- 20 Shadow squares orbiting the sun at a radius of 43.5 million km produce day/night cycle of 30 hours.
- Mass of 350*M<sub>earth</sub>*, thickness of 30m.

| Introduction | Ringworld<br>○○○●○○○ | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Parameters   |                      |                    |                      |                    |            |
|              |                      |                    |                      |                    |            |

The whole ring spins at a rate fast enough to produce a centripetal acceleration of 0.992g

Using  $a = v_t^2/R$ , this corresponds to a velocity of 1,146km/s

One rotation of the ring takes 9.7 days.


Samuel de Jong

| Introduction     | Ringworld<br>○○○○●○○ | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|------------------|----------------------|--------------------|----------------------|--------------------|------------|
| Tensile Strength |                      |                    |                      |                    |            |
|                  |                      |                    |                      |                    |            |

- The tensile stress in Pa of a thin rotating ring is given by  $T = \rho \omega^2 r^2 = \rho g R$  where g is the centripetal acceleration.
- The ringworld has a density of  $146kg/m^3$ .
- The tensile stress on the ringworld is 194TPa or 194 TRILLION Pascals!
- Structural steel has a tensile strength of 400MPa.
- Carbon nanotubes have a measured tensile strength of 62GPa and a theoretical limit of 300GPa - still well below the requirement for building a ringworld.

| Introduction | Ringworld<br>○○○○●○ | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|---------------------|--------------------|----------------------|--------------------|------------|
| Stability    |                     |                    |                      |                    |            |
|              |                     |                    |                      |                    |            |

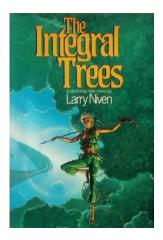
- The ringworld is unstable!
- If perfectly centered on the sun:
  - Force from each side of the ringworld is proportional to *Rdθ*.
  - Divided by R<sup>2</sup>.
- If the the ringworld is moved off center:
  - Force on one side is proportional to  $(R+x)d\theta$ .
  - Divided by  $(R+x)^2$ .
  - Force on other side is proportional to  $(R-x)d\theta$ .
  - Divided by  $(R x)^2$ .
- Ringworld is pulled further off-center, eventually crashing into the sun.



| Introduction | Ringworld<br>○○○○○● | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|---------------------|--------------------|----------------------|--------------------|------------|
| Conclusion   |                     |                    |                      |                    |            |
|              |                     |                    |                      |                    |            |

- The tensile strength required to hold the ringworld together is absurdly high.
- Attitude jets would be required to keep the ringworld centered on the sun - any deviation would cause it to fall into the sun.
- If the civilization on the ringworld were to collapse, it would be difficult to rebuild - few natural resources.

00000


The Integral Trees

**Rendezvous with Rama** 

Introduction

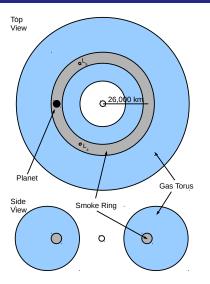
# The Integral Trees

- Also written by Larry Niven.
- Published in 1984.
- Nominated for both Hugo and Nebula awards
- Sequel, The Smoke Ring, published in 1987.
- Follows the inhabitants of an integral tree as they are exiled.



University of Victoria

Introduction


The Integral Trees

Rendezvous with Rama

Mission of Gravit

Conclusion

#### Parameters

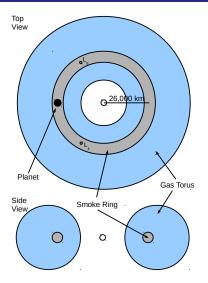


- Consider a binary system consisting of a sun like star and a neutron star with a mass of 1.5M<sub>Sol</sub>
- A gas giant orbits the neutron star just outside it's Roche limit.

Samuel de Jong

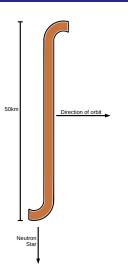
University of Victoria

Introduction


The Integral Trees

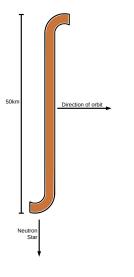
Rendezvous with Rama

Mission of Gravit


Conclusion

#### Parameters




- The gas giant's atmosphere has been pulled into a torus which surrounds the neutron star.
- The Smoke Ring is the center of the torus, where pressure is high enough to support life.
- Indigenous plants and animals have evolved to live in constant free fall.

Introduction Ringworld The Integral Trees Rendezvous with Rama



- One of these indigenous plants is the integral tree.
- The story claims these are 50km in length, and point toward the neutron star.
- Tides are created on the ends, since they are in the 'wrong' orbit.
  - The story claims these tides produce 1/5 of a g.
- The ends are bent in opposite directions due to the constant wind, producing 'integral' shape.

| Introduction   | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|----------------|----------------------|--------------------|----------------------|--------------------|------------|
| Integral Trees |                      |                    |                      |                    |            |



- The tidal acceleration on the ends of the tree is given by  $a_{tide} = \frac{2GMr}{R}$ , R being the radius of the orbit, and r the distance from the center of the tree
- Using r=25km and R=26,000km with M=1.5M<sub>Sol</sub>, this produces a tidal acceleration of 19g!
- If orbital radius is doubled to 52,000km and the length of the tree is reduced to 4km, the tidal acceleration becomes a much more manageable 1/5 of a g.
- Scifi writers sometimes make mistakes...

| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Conclusion   |                      |                    |                      |                    |            |
|              |                      |                    |                      |                    |            |

- Niven's calculation of the integral tree tidal acceleration is incorrect.
- The setting seems to be rather unlikely.
- Improbability aside, the idea, if not the numbers, makes sense.
- Scarcity of resources is still problematic.

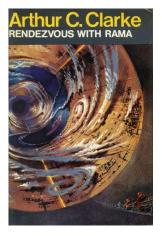
University of Victoria

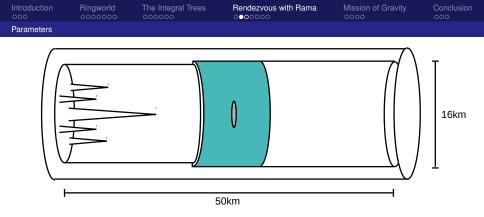
Introduction

The Int

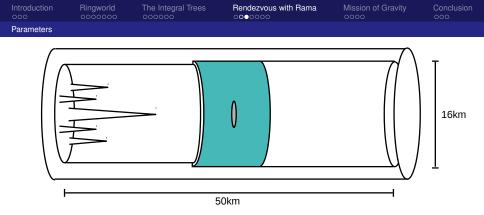
The Integral Trees

Rendezvous with Rama


Mission of Gravit


Conclusion

Introduction

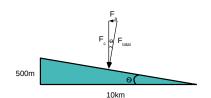

## Rendezvous with Rama

- Written by Arthur C. Clarke.
- First published in 1973.
- Won both the Hugo and Nebula awards.
- An obviously artificial object is passing through the solar system, and a ship happens to be close enough to explore it.





- Rama is a 54km long cylinder with a diameter of 20km.
- The chamber inside is 50km long, 16km across.
- There is a 10km wide "Cylindrical Sea".
  - The front cliff is 50m tall, and the aft cliff is 500m tall.
- Aft end has a series of cones, which is speculated to be part of the propulsion system.




- Rama rotates once every 4 minutes.
- This produces a rotational velocity of 209m/s, and a centripetal acceleration of  $5.48m/s^2$ , or 0.56g.
- What is the purpose of the higher aft seashore?
- During acceleration, it prevents the cylindrical sea from spilling over

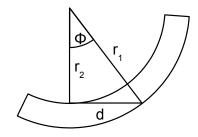
University of Victoria

| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Acceleration |                      |                    |                      |                    |            |

- How much can Rama accelerate given the height of the aft cliff?
- Combined centripetal force and acceleration force vector must be perpendicular to a line connecting each shore



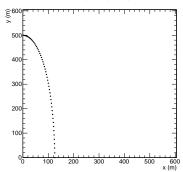
•  $tan(\theta) = \frac{500m}{10,000m} = \frac{F_a}{F_c} \to F_a = \frac{500m \times F_c}{10,000m}$ 


- $F_c = ma_c$  and  $F_a = ma_a$ , so mass cancels.
- Maximum acceleration of Rama is  $\frac{0.56g \times 500m}{10.000m} = 0.0225g$

Samuel de Jong

University of Victoria

Introduction Ringworld The Integral Trees **Rendezvous with Rama** Mission of Gravity Conclusio ○○○ ○○○○○○○ ○○○○○○ ○○○○ Jimmy's fall


- At one point in the story, a character (Jimmy) is at the top of the 500m cliff and needs to jump down into the water.
- Where will he land?
- His Tangential velocity will be 196m/s, since he is at a smaller radius



- He will travel a distance of  $d = \sqrt{r_1^2 r_2^2} = 2.784 km$ , taking t = v/d = 14.2s.
- He will subtend an angle of  $\cos^{-1}(r_2/r_1) = 20.36^\circ$ , which moves him 2.843km along the circumference.

| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama<br>○○○○○●○ | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|---------------------------------|--------------------|------------|
| Jimmy's fall |                      |                    |                                 |                    |            |

- In 14.2s, Rama rotates  $\omega \times t \times r_1 = 2.969 km$ .
- Jimmy ends up
   2.969km 2.843km
   antispinward of where he was.
- From the perspective of someone on Rama, he is 126m behind where he should be.



Jimmy's trajectory

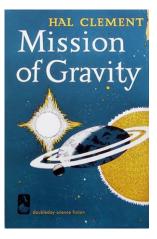
| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion |
|--------------|----------------------|--------------------|----------------------|--------------------|------------|
| Conclusion   |                      |                    |                      |                    |            |

- Probably one of the most realistic settings I've read.
- Everything about Rama has some purpose that makes sense based on real physics.
- Avoid the sequels...

Introduction

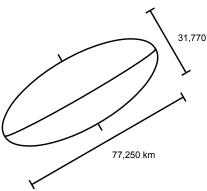
The Integral Trees

Rendezvous with Rama


Mission of Gravity

Conclusion

Introduction


# Mission of Gravity

- Written by Hal Clement.
- Published in 1953.
- Nominated for the Hugo award.
- Humans enlist the aid of aliens to retrieve an important device from their strange planet.



| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity<br>○●○○ | Conclusion |
|--------------|----------------------|--------------------|----------------------|----------------------------|------------|
| Parameters   |                      |                    |                      |                            |            |

## Mesklin



- It was thought at the time of writing that there was an object in the 61 Cygni system.
- <sup>31,770 km</sup> Mesklin is based on that object.
  - From the observations at the time, a mass of 16.2*M<sub>Jupiter</sub>* was calculated.
  - The author decided to spin it very fast: rotating once every 17.75 minutes.
  - As a result, it is a very oblate spheroid.

| Introduction    | <b>Ringworld</b><br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity<br>○○●○ | Conclusion |
|-----------------|-----------------------------|--------------------|----------------------|----------------------------|------------|
| Surface Gravity |                             |                    |                      |                            |            |

- On the equator, the gravitational acceleration is 140.3g inward.
- However, due to it's fast rotation, the centripetal acceleration is 137.2g outward.
- These add up to a nice mild 3.1g at the equator.
- As you travel away from the equator, the centripetal force decreases and the gravity increases (in a complex way).
- The author attempted to calculate the polar gravity, but found it difficult. The result he got was 275g.
  - My own attempt yeilded 897g, assuming constant density.
- Humans can visit the equator, but not the poles.

| Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity<br>○○○● | Conclusion |
|--------------|----------------------|--------------------|----------------------|----------------------------|------------|
| Conclusion   |                      |                    |                      |                            |            |
|              |                      |                    |                      |                            |            |

- It turns out that the planet in the 61 Cygni system doesn't exist.
- How would the planet get such a high spin?
- Calculation of the polar gravity is difficult due to the oblateness of the planet. Clement's initial calculation yielded ~700g, but later calculations produced 275g.

|                | Introduction | Ringworld<br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion<br>●○○ |
|----------------|--------------|----------------------|--------------------|----------------------|--------------------|-------------------|
| Final thoughts | Final though | its                  |                    |                      |                    |                   |

- If you like interesting applications of physics, you might like hard sci-fi.
- Hard science fiction stories often have poorly developed characters.
- It's fun to imagine what kind of scenarios might be possible with our knowledge of physics.

| Introduction | <b>Ringworld</b><br>0000000 | The Integral Trees | Rendezvous with Rama | Mission of Gravity | Conclusion<br>o o o |
|--------------|-----------------------------|--------------------|----------------------|--------------------|---------------------|
| Book Club    |                             |                    |                      | i i                |                     |
|              |                             |                    |                      |                    |                     |

- I run a science fiction book club, where we read a book every month.
  - Look us up on goodreads.com under "Victoria BC science fiction book club"
  - URL: https://www.goodreads.com/group/show/113905victoria-bc-science-fiction-book-club



University of Victoria

| Introduction             | <b>Ringworld</b><br>0000000 | The Integral Trees                     | Rendezvous with Rama                                         | Mission of Gravity  | Conclusion<br>○○● |
|--------------------------|-----------------------------|----------------------------------------|--------------------------------------------------------------|---------------------|-------------------|
| Other hard scier         | nce fiction                 |                                        |                                                              |                     |                   |
|                          |                             |                                        |                                                              |                     |                   |
|                          |                             |                                        |                                                              |                     |                   |
|                          |                             |                                        |                                                              |                     |                   |
|                          |                             |                                        |                                                              |                     |                   |
| Title                    |                             | Authors                                | Description                                                  |                     |                   |
| Title Author Description |                             |                                        |                                                              |                     |                   |
| Dragon's Egg             |                             | Robert Forward Life on a neutron star. |                                                              |                     |                   |
| The Mars Tril            | ogy                         | Kim S. Robinson                        | <ul> <li>Colonization and terraformation of Mars.</li> </ul> |                     |                   |
| The Black Cl             | oud                         | Fred Hoyle                             | A dust cloud surrounds the sun.                              |                     |                   |
| Tau Zero                 |                             | Poul Anderson                          | Relatavistic ship stuck in acceleration mode.                |                     |                   |
| The Fountain             | s of Paradise               | Arthur C. Clarke                       | Construction of a space elevator.                            |                     |                   |
| Neutron Star             |                             | Larry Niven                            | A series of short stories with accurate physics.             |                     |                   |
| Raft                     |                             | Stephen Baxter                         | Set in a universe w                                          | here gravity is muc | h stronger.       |
| The Martian              |                             | Andy Weir                              | Astronaut gets stra                                          | nded on Mars.       | 0                 |
|                          |                             |                                        |                                                              |                     |                   |

book club



University of Victoria

Samuel de Jong